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The Cuntz semigroup

Ordered semigroup, constructed as follows.
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@ Fora,be (A®K)4, [a] < [b] if

la— spbsn| — 0,

for some (sp) C A® K.
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The Cuntz semigroup

Ordered semigroup, constructed as follows.
@ Fora,be (A®K)4, [a] < [b] if

lla— spbsn|| — 0,
for some (sp) C A® K.
© [a] = [b] if [a] < [b] and [b] < [a].
@ Cu(A)={lal:ac (A K)4+}
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The Cuntz semigroup

Ordered semigroup, constructed as follows.
@ Fora,be (A®K)4, [a] < [b] if

|la— spbsy| — 0,
for some (sp) C A® K.
e [a] = [b]if [a] < [b] and [b] < [a].
@ Cu(A)={lal:ac (A K)4+}
e [a] +[b] .= [@ + b/] where [a] = [d],[b] =[] and & L b'.
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The Cuntz semigroup: applications

Regularity of C*-algebras.
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The Cuntz semigroup: applications

Regularity of C*-algebras.

Theorem (Toms ’08)

3 two (simple, nuclear, seperable, unital) C*-algebras which
have the same value under classical invariants, yet their Cuntz
semigroups differ.
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The Cuntz semigroup: applications

Regularity of C*-algebras.

Theorem (Toms ’08)

3 two (simple, nuclear, seperable, unital) C*-algebras which
have the same value under classical invariants, yet their Cuntz
semigroups differ.

Theorem (Winter, preprint ’10)

For unital, simple C*-algebras, Cu(A) is “nice” (almost
unperforated and almost divisible) if and only if A is nice
(Z-stable and therefore, hopefully, classifiable).
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The Cuntz semigroup: applications

Regularity of C*-algebras.

Theorem (Toms ’08)

3 two (simple, nuclear, seperable, unital) C*-algebras which
have the same value under classical invariants, yet their Cuntz
semigroups differ.

Theorem (Winter, preprint ’10)

For unital, simple C*-algebras, Cu(A) is “nice” (almost
unperforated and almost divisible) if and only if A is nice
(Z-stable and therefore, hopefully, classifiable). (Provided A
has locally finite nuclear dimension).
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The Cuntz semigroup: applications

Classification of non-simple C*-algebras
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The Cuntz semigroup: applications

Classification of non-simple C*-algebras

Cu(A) contains the ideal lattice of A and Cu(/),Cu(A/I) for
every ideal /.
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The Cuntz semigroup: applications

Classification of non-simple C*-algebras

Cu(A) contains the ideal lattice of A and Cu(/),Cu(A/I) for
every ideal /.

This makes Cu(A) a good candidate for non-simple
classification.

Aaron Tikuisis The Cuntz semigroup of C(X, A)



The Cuntz semigroup: applications

Classification of non-simple C*-algebras

Cu(A) contains the ideal lattice of A and Cu(/),Cu(A/I) for
every ideal /.

This makes Cu(A) a good candidate for non-simple
classification.

(Only as a part of the invariant - eg. K{(A) doesn'’t appear in
Cu(A).)
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The Cuntz semigroup: applications

Classification of non-simple C*-algebras
Cu(A) contains the ideal lattice of A and Cu(/),Cu(A/I) for
every ideal /.

This makes Cu(A) a good candidate for non-simple
classification.

(Only as a part of the invariant - eg. K{(A) doesn'’t appear in
Cu(A).)

Theorem (Robert, preprint ’10)

(Generalizing previous results by Ciuperca, Elliott, Santiago)
Cu(-) classifies unital inductive limits of 1-dimensional
noncommutative CW complexes with trivial Kj.
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Approximately subhomogeneous algebras

A C*-algebra is subhomogeneous if there is a bound on its
irred. rep. dimensions.
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Approximately subhomogeneous algebras

A C*-algebra is subhomogeneous if there is a bound on its
irred. rep. dimensions.

A C*-algebra is approximately subhomogeneous (ASH) if it
is an inductive limit of subhomogeneous algebras.
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Approximately subhomogeneous algebras

A C*-algebra is subhomogeneous if there is a bound on its
irred. rep. dimensions.

A C*-algebra is approximately subhomogeneous (ASH) if it
is an inductive limit of subhomogeneous algebras.

ASH algebras include: AF algebras, irrational rotation algebras,
other important (simple) C*-algebras.
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Approximately subhomogeneous algebras

A C*-algebra is subhomogeneous if there is a bound on its
irred. rep. dimensions.

A C*-algebra is approximately subhomogeneous (ASH) if it
is an inductive limit of subhomogeneous algebras.

ASH algebras include: AF algebras, irrational rotation algebras,
other important (simple) C*-algebras.

Open: Is every simple, separable, finite, nuclear C*-algebra
ASH?
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Main result: the Cuntz-equivalence invariant I(-)

Define a Cuntz-equivalence invariant I(-) on Co(X,A® K).
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Main result: the Cuntz-equivalence invariant I(-)

Define a Cuntz-equivalence invariant I(-) on Co(X,A® K).

I(a) consists of:
@ x — [a(x)] (a function X — Cu(A)); and
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Main result: the Cuntz-equivalence invariant I(-)

Define a Cuntz-equivalence invariant I(-) on Co(X,A® K).

I(a) consists of:
@ x — [a(x)] (a function X — Cu(A)); and

@ [alk]| € V(C(K,A)) for each compact K C X for which
[a(x)] is constant and in V(A) on K.
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Define a Cuntz-equivalence invariant I(-) on Co(X,A® K).

I(a) consists of:
@ x — [a(x)] (a function X — Cu(A)); and

@ [alk]| € V(C(K,A)) for each compact K C X for which
[a(x)] is constant and in V(A) on K.
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Main result: the Cuntz-equivalence invariant I(-)

Define a Cuntz-equivalence invariant I(-) on Co(X,A® K).

I(a) consists of:
@ x — [a(x)] (a function X — Cu(A)); and

@ [alk]| € V(C(K,A)) for each compact K C X for which
[a(x)] is constant and in V(A) on K.

I(-) is complete:

Theorem
If X is I.c., Hausdorff, 2" countable
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Main result: the Cuntz-equivalence invariant I(-)

Define a Cuntz-equivalence invariant I(-) on Co(X,A® K).

I(a) consists of:
@ x — [a(x)] (a function X — Cu(A)); and

@ [alk]| € V(C(K,A)) for each compact K C X for which
[a(x)] is constant and in V(A) on K.

I(-) is complete:

Theorem

If X is |.c., Hausdorff, 2" countable and A is sep., ASH,
Z-stable

Aaron Tikuisis The Cuntz semigroup of C(X, A)



Main result: the Cuntz-equivalence invariant I(-)

Define a Cuntz-equivalence invariant I(-) on Co(X,A® K).

I(a) consists of:
@ x — [a(x)] (a function X — Cu(A)); and

@ [alk]| € V(C(K,A)) for each compact K C X for which
[a(x)] is constant and in V(A) on K.

I(-) is complete:

Theorem

If X is |.c., Hausdorff, 2" countable and A is sep., ASH,
Z-stable then for a, b € Co(X,A® K)4,
[a] < [b] iff I(a) < I(b)
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Main result: the Cuntz-equivalence invariant I(-)

Define a Cuntz-equivalence invariant I(-) on Co(X,A® K).

I(a) consists of:
@ x — [a(x)] (a function X — Cu(A)); and

@ [alk]| € V(C(K,A)) for each compact K C X for which
[a(x)] is constant and in V(A) on K.

I(-) is complete:

Theorem

If X is |.c., Hausdorff, 2" countable and A is sep., ASH,
Z-stable then for a, b € Co(X,A® K)4,

[a] < [b] iff I(a) < I(b)
(i.e. [a(x)] < [b(x)] for all x and [a|k] = [b|k] for any compact K
for which [a(x)] = [b(x)] is constant and in V(A) on K).
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Main result: the range of I(+)

Recall: I(a) consists of
® x — [a(x)]

@ [alk] € V(C(K,A)) for each compact K C X for which
[a(x)] is constant = [p] € V(A) on K;
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Main result: the range of I(+)

Recall: I(a) consists of
@ x — [a(x)] = f(x), a <-lower semicontinuous function
f: X — Cu(A)
@ [alx] € V(C(K,A)) for each compact K C X for which
[a(x)] is constant = [p] € V(A) on K;
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Main result: the range of I(+)

Recall: I(a) consists of

@ x — [a(x)] = f(x), a <-lower semicontinuous function
f: X — Cu(A)

@ [alx] € V(C(K,A)) for each compact K C X for which
[a(x)] is constant = [p] € V(A) on K;
for [p] € V(A), this can be captured by a single projection
ap € Co(f([p]), A K),
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Main result: the range of I(+)

Recall: I(a) consists of

@ x — [a(x)] = f(x), a <-lower semicontinuous function
f: X — Cu(A)

@ [alk] € V(C(K,A)) for each compact K C X for which
[a(x)] is constant = [p] € V(A) on K;
for [p] € V(A), this can be captured by a single projection
ap) € Co(([p]), A® K), such that [ayp)1 k] = [alk] for
each compact K C f~'([p]).
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Main result: the range of I(+)

Recall: I(a) consists of

@ x — [a(x)] = f(x), a <-lower semicontinuous function
f: X — Cu(A)

@ [alk] € V(C(K,A)) for each compact K C X for which
[a(x)] is constant = [p] € V(A) on K;
for [p] € V(A), this can be captured by a single projection
ap) € Co(([p]), A® K), such that [ayp)1 k] = [alk] for
each compact K C f~'([p]).
The family ay; is compatible with f in the sense that
[ap)(x)] = f(x) wherever defined (i.e. wherever f(x) = [p]).
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Main result: the range of I(+)

X, A as before. Given a <-lower semicontinuous f : X — Cu(A)
and a compatible family of projections (&) [pjcv(4)
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Main result: the range of I(+)

Theorem

X, A as before. Given a «-lower semicontinuous f : X — Cu(A)
and a compatible family of projections (&) )[pjcv(4) » there exists
[a] S CU(CQ(X, A)) such that ]I(a) = (f, (a[p])[p]e V(A)»
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Main result: the range of I(+)

Theorem

X, A as before. Given a «-lower semicontinuous f : X — Cu(A)
and a compatible family of projections (&) )[pjcv(4) » there exists
[a] € Cu(Co(X, A)) such that I(a) = (f, (ay))[gcv(a): that is,

@ [a(x)] = f(x) for all x;
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Main result: the range of I(+)

Theorem

X, A as before. Given a «-lower semicontinuous f : X — Cu(A)
and a compatible family of projections (&) )[pjcv(4) » there exists
[a] € Cu(Co(X, A)) such that I(a) = (f, (ay))[gcv(a): that is,

@ [a(x)] = f(x) for all x; and

@ [alk] = [ay|k] for any compact K C f~'([p]).
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Main result: putting it together

A, X as before. The Cuntz semigroup of Cy(X, A) may be
identified with pairs (f, ({@jp]))[p1ev(4))
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@ f: X — Cu(A) is <-lower semicontinuous;
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Main result: putting it together

A, X as before. The Cuntz semigroup of Cy(X, A) may be
identified with pairs (f, ((&jp]))[pjev(4)) Where

@ f: X — Cu(A) is <-lower semicontinuous; and
@ For each [p] € V(A), aj, is a projection in
Co(f~1([p]), A® K) satisfying [ap,(x)] = [p] for all x

Aaron Tikuisis The Cuntz semigroup of C(X, A)



Main result: putting it together

A, X as before. The Cuntz semigroup of Cy(X, A) may be
identified with pairs (f, ((&jp]))[pjev(4)) Where

@ f: X — Cu(A) is <-lower semicontinuous; and

@ For each [p] € V(A), aj, is a projection in
Co(f~1([p]), A® K) satisfying [ay;(x)] = [p] for all x, and
(ajp)) denotes its equivalence class via the relation
a[p] ~ b[p] if a[p]|K ~M—vN b[p]|K for all compact

K < ([p])-
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Key ideas in the proof

Structure of ASH algebras
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Key ideas in the proof

Structure of ASH algebras

Proposition (Ng-Winter, Phillips, T)

Every separable ASH algebra is an inductive limit of RSH
algebras with finite dimensional total space.
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Key ideas in the proof

Structure of ASH algebras

Proposition (Ng-Winter, Phillips, T)

Every separable ASH algebra is an inductive limit of RSH
algebras with finite dimensional total space.

My contribution: extending the result to the nonunital case.
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Key ideas in the proof

Structure of ASH algebras
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Key ideas in the proof

Structure of ASH algebras

Let A be RSH with finite dimensional total space, / C A an ideal.
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Key ideas in the proof

Structure of ASH algebras

Let A be RSH with finite dimensional total space, / C A an ideal.
Suppose a, b € A are such that
@ Ranko(a) < Ranko(b) for every irred. rep. o : A — M, for
which o(/) = 0; and
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Key ideas in the proof

Structure of ASH algebras

Let A be RSH with finite dimensional total space, / C A an ideal.
Suppose a, b € A are such that
@ Ranko(a) < Ranko(b) for every irred. rep. o : A — M, for
which o(/) = 0; and
@ [m(a)] < [m(b)]inCu(A/l).
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Key ideas in the proof

Structure of ASH algebras

Proposition
Let A be RSH with finite dimensional total space, / C A an ideal.
Suppose a, b € A are such that
@ Ranko(a) < Ranko(b) for every irred. rep. o : A — M, for
which o(/) = 0; and
@ [m(a)] < [m(b)]inCu(A/l).
Then[a® 1z] < [b®1z]inCu(A® Z).
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Key ideas in the proof

Structure of ASH algebras

Proposition
Let A be RSH with finite dimensional total space, / C A an ideal.
Suppose a, b € A are such that
@ Ranko(a) < Ranko(b) for every irred. rep. o : A — M, for
which o(/) = 0; and
@ [m(a)] < [m(b)]inCu(A/l).
Then[a® 1z] < [b®1z]inCu(A® Z).

This result is used on finite stages to achieve the completeness
of I(-).
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Key ideas in the proof

Structure of ASH algebras

Proposition

Let A be RSH with finite dimensional total space, / C A an ideal.
Suppose a, b € A are such that

@ Ranko(a) < Ranko(b) for every irred. rep. o : A — M, for
which o(/) = 0; and
o [r/(a)] < [r/(b)] in Cu(A/I).
Then[a® 1z] < [b®1z]inCu(A® Z).

This result is used on finite stages to achieve the completeness
of I(-).

A slightly stronger version is also used in the computation of
the range of I(-).
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Key ideas in the proof

Riesz interpolation in Cu(A)
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Key ideas in the proof

Riesz interpolation in Cu(A)

Proposition (Brown-Perera-Toms, Elliott-Robert-Santiago)

If Ais simple, finite, exact, and Z-stable then
Cu(A) = V(A) I Lsc(T(A), (0, ]).
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Key ideas in the proof

Riesz interpolation in Cu(A)

Proposition (Brown-Perera-Toms, Elliott-Robert-Santiago)

If Ais simple, finite, exact, and Z-stable then
Cu(A) = V(A) I Lsc(T(A), (0, ]).

Proposition
For A as above, Cu(A) has Riesz interpolation
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Key ideas in the proof

Riesz interpolation in Cu(A)

Proposition (Brown-Perera-Toms, Elliott-Robert-Santiago)

If Ais simple, finite, exact, and Z-stable then
Cu(A) = V(A) I Lsc(T(A), (0, ]).

For A as above, Cu(A) has Riesz interpolation , i.e. if
[a1] _ [ci]
[a2] — [ce],
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Key ideas in the proof

Riesz interpolation in Cu(A)

Proposition (Brown-Perera-Toms, Elliott-Robert-Santiago)

If Ais simple, finite, exact, and Z-stable then
Cu(A) = V(A) I Lsc(T(A), (0, ]).

Proposition
For A as above, Cu(A) has Riesz interpolation , i.e. if
[a1] _ [ci]
[a2] — [ce],
then there exists [b] € Cu(A) such that
[a1] [c1]
[a2] [ca].

<[p] <

Aaron Tikuisis The Cuntz semigroup of C(X, A)



Key ideas in the proof

Riesz interpolation in Cu(A)

Proposition
For A as above, Cu(A) has Riesz interpolation
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Key ideas in the proof

Riesz interpolation in Cu(A)

Proposition

For A as above, Cu(A) has Riesz interpolation

This result is used in the computation of the range of I(-):
Lemma

If Ais separable, Cu(A) has Riesz interpolation, and
f: X — Cu(A) is <-lower semicontinuous
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Key ideas in the proof
Riesz interpolation in Cu(A)

Proposition
For A as above, Cu(A) has Riesz interpolation

This result is used in the computation of the range of I(-):

If Ais separable, Cu(A) has Riesz interpolation, and
f: X — Cu(A) is <-lower semicontinuous then f is the
pointwise supremum of a sequence of <«-lower semicontinuous
functions f, : X — Cu(A) with finite range.
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