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Abstract. Let X be a proper metric space, which has finite
asymptotic dimension in the sense of Gromov (or more gener-
ally, straight finite decomposition complexity of Dranishnikov and
Zarichnyi). New descriptions are provided of the Roe algebra of
X: (i) it consists exactly of operators which essentially commute
with diagonal operators coming from Higson functions (that is,
functions on X whose oscillation tends to 0 at ∞), and (ii) it con-
sists exactly of quasi-local operators, that is, ones which have finite
ε-propogation (in the sense of Roe) for every ε > 0. These descrip-
tions hold both for the usual Roe algebra and for the uniform Roe
algebra.

1. Introduction

The Roe algebra is a C*-algebra constructed from a proper metric
space, which encodes “coarse” or “large-scale” properties of the space
(in the sense of Gromov). In typical applications, the space may be a
complete, non-compact Riemannian manifold with bounded geometry,
or finitely generated group with the word metric. The origins of this
construction come from index theory, reflecting the insight that the Roe
algebra is large enough to contain indices of many operators with which
one wants to do index theory – such as geometric differential operators –
yet small enough to have interesting and informative K-theory. It plays
a central role in the coarse Baum–Connes conjecture, the study (and
partial confirmation) of which has been a fruitful endeavor, leading
to significant results concerning the Novikov conjecture and the scalar
curvature of Riemannian manifolds [3, 12, 15, 21, 22, 24, 25, 29, 30,
31, 32]. It furthermore appears in work on the essential spectrum of
Hamiltonian operators of quantum systems, Schrödinger operators, and
various other operators, which are affiliated to the appropriate versions
of Roe algebras [7, 8, 9, 19].

Roughly, the Roe algebra consists of bounded, locally compact op-
erators on something like L2(X) (where X is the underlying space)
which can be approximated by those with finite propogation. Here an
operator a has “finite propogation” if it is localized near to the diag-
onal; one way of making this precise is, that there exists R > 0 such
that for any f, f ′ ∈ Cb(X) (acting on L2(X) as diagonal operators – by
multiplication), if the supports of f and f ′ are separated by a distance
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of at least R, then faf ′ = 0. Operators in the Roe algebra are required
to be approximated in the operator norm by these finite propogation
operators.

The Roe algebra is an interesting object to study from an operator
algebraic perspective: that is, asking about its structure as an operator
algebra, and how this structure relates to the proper metric space from
which it is constructed. For example, Ozawa showed that exactness of
a group can be characterized by amenability of the corresponding uni-
form Roe algebra ([18]). The question of how much of the large–scale
structure of a space is remembered by the Roe algebra, was partially
answered by JS and Rufus Willett: given two uniformly discrete proper
metric spaces with Yu’s property A, their Roe algebras are ∗-isomorphic
if and only if the spaces are coarsely equivalent ([26]). In [28], Winter
and Zacharias showed an interesting one-way connection between the
asymptotic dimension of a metric space and the nuclear dimension of
the corresponding uniform Roe algebra; the latter is a numerical invari-
ant for amenable C*-algebras which is crucial in recent results in the
classification of amenable C*-algebras. Their result is that the nuclear
dimension of the Roe algebra is at most the asymptotic dimension of
the underlying uniformly discrete proper metric space, and they asked
the (still open) question of whether the reverse inequality also holds.

In this paper, we look at a fundamental question: exactly which
operators are in the Roe algebra? In [22], Roe defined the concept
of finite ε-propogation for an operator a on L2(X), as the following
variant of finite propogation: a has finite ε-propogation if there exists
R > 0 such that for any f, f ′ ∈ Cb(X), if the supports of f and
f ′ are separated by a distance of at least R, then ‖faf ′‖ ≤ ε‖f‖ ·
‖f ′‖. Operators with finite ε-propogation for all ε > 0 have also been
called quasi-local operators in the literature (originally from [21, Page
100]). It is a straightforward observation that, although limits of finite
propogation operators need not have finite propogation, limits of finite
ε-propogation operators have finite ε-propogation (that is, the set of
quasi-local operators is norm-closed). Therefore, all operators in the
Roe algebra are quasi-local.

The question we address is the converse: if an operator is quasi-local,
is it in the Roe algebra, i.e., is it approximated by operators with finite
propogation? We provide an affirmative answer in the situation that
the space has finite asymptotic dimension (as predicted by Roe), and
more generally under the hypothesis of straight finite decomposition
complexity of Dranishnikov and Zarichnyi [4]. The latter is a weaker
version of the “classical” finite decomposition complexity, as defined
by Guentner, Tessera, and Yu [13, 14].

A motivation for asking whether quasi-local operators are in the
Roe algebra, pointed out to the authors by Alexander Engel, is that
whereas indices of genuine differential operators are known to be in
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the Roe algebra, corresponding arguments only shows that indices of
pseudo-differential operators (using their most natural representative)
are quasi-local (see [5, Section 2]). Since the Roe algebra is better
studied and understood than the C*-algebra of all quasi-local operators,
it is interesting and useful to know that a pseudo-differential operator
belongs to it; indeed, our result answers [5, Question 6.4] under the
assumption of straight finite decomposition complexity (this sort of
assumption is anticipated in the question).

Additionally, we expose that the above question can be reformulated
in terms of essential commutation with Higson functions, or in terms
of relative commutants.

So far we have been a bit vague about what we mean by the Roe
algebra (hiding behind the phrase “something like L2(X)”). This is
because in the literature there are two different versions of the Roe al-
gebra, the “Roe algebra” and the “uniform Roe algebra”. Our results
apply to both of these C*-algebras, and indeed our main theorem is
formulated in a way that encompasses both, as well as the “uniform al-
gebra” UC∗(X). The main result was proven by Lange and Rabinovich
for the uniform Roe algebra of Zd in [17]. Engel proved a special case
of the result, namely that for discrete groups G that are lattices in a
Riemannian manifold with bounded geometry and polynomial volume
growth, quasi-local operators that decay sufficiently quickly are in the
Roe algebra ([6, Corollary 2.33]).1

Let us now summarize the argument behind the main result: that
quasi-local operators are in the Roe algebra (assuming straight finite
decomposition complexity). Suppose for simplicity that X is a discrete
space with asymptotic dimension at most 1 – for example a finitely
generated free group. This case is much more restricted than finite de-
composition complexity, but still difficult enough to allow us to convey
the main ideas. Let a be a quasi-local operator. Asymptotic dimension
at most 1 will allow us to decompose the space X into 2 pieces, X(0)

and X(1), each piece being a disjoint union of sets that are far apart
from each other and uniformly bounded in diameter. The characteristic
functions e(0), e(1) of these pieces produce a partition of unity, and di-
vides a into a sum of four pieces: e(i)ae(j) over i, j = 0, 1. Each e(i)ae(i)

looks roughly like an infinite block matrix, indexed by the pieces from
X(i). The hypothesis that a is quasi-local (finite ε-propogation) gives

1In fact, Engel proved the result for quasi-local operators that decay sufficiently
on any Riemannian manifold with bounded geometry and polynomial volume
growth. For groups, polynomial growth implies virtual nilpotency ([11]), which
in turn implies finite asymptotic dimension ([1, Corollary 68]). To our knowledge,
it is not known whether polynomial volume growth implies finite asymptotic di-
mension (or even (straight) finite decomposition complexity) outside of the case of
groups.
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us a lot of control over the norm of the non-diagonal entries of this ma-
trix, and a conditional expectation argument allows us to conclude that
e(i)ae(i) is not far away from its “restriction” to the diagonal (provided
that the pieces in X(i) are sufficiently well separated), see Corollary
4.3. Since the pieces of the X(i) are uniformly bounded, the operator
we get by expecting onto the diagonal has genuinely finite propogation.
An algebraic trick allows us to view the asymmetric pieces e(i)ae(j) as
matrices in a similar way, so that we can likewise approximate each of
them by finite propogation operators. In this way, we approximate a
as a sum of four operators with finite propogation.

Outline. In Section 2 we introduce our general setup, with the Roe
algebra, the uniform Roe algebra, and the uniform algebra as exam-
ples. We then state the main result, Theorem 2.8, in the language of our
general setup. We give some background on asymptotic dimension and
(straight) finite decomposition complexity in Section 2.1. The equiva-
lence between quasi-locality and the relative commutant-type property
is fairly straightforward, and laid out in Section 3. We use a more tech-
nical formulation of quasi-locality as a stepping stone towards proving
that it implies being in the Roe algebra (assuming straight finite de-
composition complexity), a proof that is carried out in Section 4. In
Section 5, we prove that the relative commutant-type property is equiv-
alent to essential commutation with Higson functions. The final sec-
tion, Section 6, is concerned with the commutative (but non-separable)
C*-algebra VL∞(X) that arises in our relative commutant-type prop-
erty, looking at how well it determines X (up to coarse equivalence),
and at its nuclear dimension (roughly, the covering dimension of its
spectrum).

Acknowledgments. AT was supported by EPSRC EP/N00874X/1.
JS was supported by Marie Curie FP7-PEOPLE-2013-CIG Coarse Anal-
ysis (631945). We would like to thank Alexander Engel, John Roe,
Thomas Weighill, Stuart White, and Rufus Willett for comments and
discussion relating to this piece.

2. Definitions and the main result

Let A be a C*-algebra. We denote by A1 the closed unit ball of A.
For a, b ∈ A and ε > 0, we write a ≈ε b to mean ‖a− b‖ ≤ ε. Define

A∞ := l∞(N, A)/{(an)∞n=1 ∈ l∞(N, A) : lim
n→∞

‖an‖ = 0},

which is a C*-algebra.
We now set up a general situation to which our main result applies,

encompassing both Roe algebras and uniform Roe algebras, as well as
uniform algebras (see Example 2.5). Subsequently, we will state our
main result in its full generality (Theorem 2.8)
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Definition 2.1. Let X be a proper metric space. By an X-module,
we mean a Hilbert space H and an injective unital ∗-homomorphism
Cb(X) → B(H), which is strictly continuous when viewing Cb(X) and
B(H) as multiplier algebras of C0(X) and K(H) respectively. We shall
suppress the ∗-homomorphism Cb(X) → B(H), and treat Cb(X) as a
C*-subalgebra of B(H).

For R ≥ 0, an operator a ∈ B(H) has propogation at most R if
for any f, f ′ ∈ Cb(X), if the supports of f and f ′ are R-disjoint then
faf ′ = 0. For R ≥ 0 and ε > 0, an operator a ∈ B(H) has ε-
propogation at most R if for any f, f ′ ∈ Cb(X)1, if the supports of
f and f ′ are R-disjoint then ‖faf ′‖ < ε. An operator a ∈ B(H) is
quasi-local if for every ε > 0, it has finite ε-propogation.

Definition 2.2. Let X be a proper metric space and let H be an X-
module. Given an equicontinuous family (ej)j∈J of positive contractions
from Cb(X) with pairwise disjoint supports, define the block cutdown
map θ(ej)j∈J

: B(H)→ B(H) by

θ(ej)j∈J
(a) :=

∑
j∈J

ejaej

(using disjointness of the supports and the fact that the family is con-
tractive, the right-hand sum converges in the strong operator topology).

Let B ⊆ B(H) be a C*-subalgebra such that Cb(X)BCb(X) = B. B is
closed under block cutdowns if θ(ej)j∈J

(B) ⊆ B for every equicontinuous
family (ej)j∈J of positive contractions from Cb(X) with pairwise disjoint
supports.

For an equicontinuous family (ej)j∈J of positive contractions from
Cb(X) with pairwise disjoint supports, the block cutdown map θ(ej)j∈J

defined above is evidently completely positive and contractive (c.p.c.).
Note that multiplication by Cb(X) commutes with block cutdowns:

fθ(ej)j∈J
(a) = θ(ej)j∈J

(fa) and θ(ej)j∈J
(a)f = θ(ej)j∈J

(af)

for f ∈ Cb(X) and a ∈ B(H). Also note that

(2.1) ‖θ(ej)j∈J
(a)‖ = sup

j∈J
‖ejaej‖.

Note that, if (ej)j∈J is an equicontinuous family of positive contrac-
tions from Cb(X) with uniformly bounded, pairwise disjoint supports,
then θ(ej)j∈J

(a) has finite propogation, for every a ∈ B(H).

Definition 2.3. Let X be a proper metric space, H an X-module, and
let B ⊆ B(H) be a C*-subalgebra such that Cb(X)BCb(X) = B, and
which is closed under block cutdowns. Define

(i) Roe(X,B) := {b ∈ B : b has finite propogation})
‖·‖

, and

(ii) K(X,B) := C0(X)BC0(X).
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If, in addition, we have

(2.2) [C0(X), B] ⊆ K(X,B),

we shall call Roe(X,B) a Roe-like algebra of X.

Remark 2.4. The condition (2.2) implies that K(X,B) is an ideal in
Roe(X,B). It is automatically satisfied in all the examples below,
where in fact C0(X)B ⊆ K(X,B) (and K(X,B) turns out to be the
ideal of compact operators). Finally, it is not needed for the substantial
part of this piece, so we shall explicitly refer to it when needed.

Example 2.5. Let X be a uniformly discrete proper metric space. Let
H′ be an infinite dimensional, separable Hilbert space. Set Hu :=
l2(X) and H := l2(X,H′); Cb(X) acts on both of these by pointwise
multiplication, making them X-modules.

(i) With Bu := B(Hu), we see that Cb(X)BuCb(X) = Bu, and Bu is
closed under block cutdowns. In this case, Roe(X,Bu) = C∗u(X), the
uniform Roe algebra, and K(X,Bu) = K(Hu). Since C0(X) ⊆ K(Hu),
it follows that C0(X)Bu ⊆ K(Hu) = K(X,Bu).

(ii) Set B equal to the set of all b ∈ B(H) which are locally compact,
in the sense that for every f ∈ C0(X),

fb, bf ∈ K(H).

We see that Cb(X)BCb(X) = B, and B is closed under block cutdowns.
Then Roe(X,B) = C∗(X), the Roe algebra, and K(X,B) = K(H).

(iii) Assume that X has bounded geometry. Set B0 equal to the
closure of the set of all b = (bx,y)x,y∈X ∈ B(H) for which the rank of
bx,y ∈ B(H′) is uniformly bounded. When b = (bx,y)x,y∈X ∈ B(H) has
entries with rank bounded by k, then so does any block cutdown map
applied to b. Since each block cutdown map is continuous, it follows
that B0 is closed under block cutdowns. Continuity of multiplication
ensures that

Cb(X)B0Cb(X) = B0.

When X has bounded geometry, then Roe(X,B0) = UC∗(X), the uni-
form algebra of X, defined as the closure of finite propogation operators
b = (bx,y)x,y∈X ∈ B(H) for which the rank of bx,y is uniformly bounded.

To see this, it is clear that Roe(X,B0) contains UC∗(X). To show
Roe(X,B0) ⊆ UC∗(X), it suffices to check that every finite propoga-
tion operator a ∈ B0 is contained in UC∗(X). For such a, say its
propogation is less than R > 0. Set

K := sup
x∈X
|BR(x)|,
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which is finite due to the hypothesis of bounded geometry. Define
ER : B(H)→ B(H) by ER ((bx,y)x,y∈X) := (cx,y)x,y∈X where

cx,y :=

{
bx,y, d(x, y) < R;

0, d(x, y) ≥ R.

Note that ‖ER ((bx,y)x,y∈X)‖ ≤ K ‖(bx,y)x,y∈X‖ (this is a straightfor-
ward argument, see e.g., the proof of [28, Lemma 8.1]), so that in
particular, EK is continuous. Also note that EK(a) = a. Since a ∈ B0,
it is a limit of a sequence of operators bn = (bnx,y)x,y∈X such that for each
n, there exists Kn bounding the rank of bnx,y over all x, y ∈ X. Thus
the same bound Kn applies to EK(bn) so that EK(bn) ∈ UC∗(X). By
continuity of EK , a = limn→∞EK(bn) ∈ UC∗(X).

In this example, we also have K(X,B0) = K(H), and since B0 ⊆ B
(from (ii)), C0(X)B ⊆ K(H) = K(X,B0)

(iv) Generalizing (ii), let X be any proper metric space and let H be
an adequate X-module in the sense of [22, Definition 3.4]. Recall that
an operator b ∈ B(H) is locally compact if C0(X)b, bC0(X) ⊆ K(H).
Set B equal to the set of all locally compact, bounded operators. One
can easily see that Cb(X)BCb(X) = B; it is also true that B is closed
under block cutdowns.

To see this, let b ∈ B(H) be locally compact with ‖b‖ ≤ 1, let
(ej)j∈J be an equicontinuous family of positive contractions in Cb(X)
with pairwise disjoint supports, and set b′ := θ(ej)j∈J

(b), which we must
prove is locally compact. As K(H) is closed, it suffices to show that for
any f ∈ Cc(X) with ‖f‖ ≤ 1, fb′, b′f ∈ K(H). Given ε > 0, note that

b′ ≈2ε θ((ej−ε)+)j∈J
(b),

where (ej − ε)+ ∈ Cb(X) is given by (ej − ε)+(x) := max{ej(x)− ε, 0}.
By equicontinuity and pairwise disjointness of the family (ej), we may
choose δ such that if d(x, y) < δ and j 6= j′, then at most one of ej(x)
or ej′(y) can be nonzero. Thus if f ∈ Cc(X), then by compactness of
its support, there are only finitely many j for which f(ej − ε)+ 6= 0.
Consequently,

fb′ ≈2ε fθ((ej−ε)+)j∈J
(b)

= f
∑
j∈J

(ej − ε)+b(ej − ε)+

=
∑
j

f(ej − ε)+b(ej − ε)+,

and as this is a finite sum of elements of K(H), it is itself in K(H). As
K(H) is closed and ε > 0 is arbitrary, it follows that fb′ ∈ K(H). Like-
wise, b′f ∈ K(H), establishing that b′ is locally compact, and therefore
that B is closed under block cutdowns.
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In this example, we get Roe(X,B) = C∗(X), the Roe algebra, and
K(X,B) = K(H) = C0(X)B.

Definition 2.6. Let X be a metric space. A bounded sequence (fn)∞n=1

from Cb (X) is very Lipschitz if, for every L > 0, there exists n0 such
that fn is L-Lipschitz for all n ≥ n0. Let VL (X) denote the set of all
very Lipschitz bounded sequences from Cb (X). Define

VL∞ (X) := VL (X) /{(fn)∞n=1 ∈ VL (X) | lim
n→∞

‖fn‖ = 0}.

VL (X) is a C∗-subalgebra of l∞ (N, Cb (X)),2 and therefore the quo-
tient VL∞ (X) is a C*-subalgebra of (Cb(X))∞.

E.g., if X is a finitely generated group G with the word metric, then
VL∞ (X) can be identified with the fixed point algebra of l∞ (G)∞
under the action of G induced by left translation on l∞ (G).

Recall the following definition from [23].

Definition 2.7. Let X be a proper metric space. A function g ∈ Cb(X)
is a Higson function (also called a slowly oscillating function) if, for
every R > 0 and ε > 0, there exists a compact set A ⊆ X such that
for x, y ∈ X\A, if d(x, y) < R then |g(x) − g(y)| < ε. The set of all
Higson functions on X is denoted Ch(X).

E.g., if X is a finitely generated group G with the word metric,
then Ch(X) ⊆ l∞(X) is the preimage of the fixed point algebra of
l∞ (G) /c0(G) under the action of G induced by left translation on
l∞ (G).

In the following, H is an X-module, and we view both VL∞ (X)
and B ⊆ B (H) as C*-subalgebras of B (H)∞, and consider the relative
commutant

B ∩ VL∞ (X)′ .

It is easy to see that any finite propogation operator commutes with
VL∞ (X), and by taking limits it follows that

Roe(X,B) ⊆ B ∩ VL∞ (X)′ .

The main result is as follows. Recall that straight finite decomposi-
tion complexity, as introduced in [4], is a weakening of finite asymptotic
dimension ([14, Theorem 4.1]). Both properties are defined in the fol-
lowing subsection.

2To check that the product of two very Lipschitz sequences is itself very Lipschitz,
use the fact that if f, g are bounded functions, such that f is L-Lipschitz and g is
L′-Lipschitz, then fg is (‖f‖L′ + ‖g‖L)-Lipschitz.
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Theorem 2.8. Let X be a proper metric space, H an X-module, and
let B ⊆ B(H) be a C*-subalgebra such that Cb(X)BCb(X) = B, which
is closed under block cutdowns, and such that (2.2) holds. For b ∈ B,
the following are equivalent.

(i) [b, f ] = 0 for all f ∈ VL∞(X);
(ii) b is quasi-local (it has finite ε-propogation for every ε > 0);
(iii) [b, g] ∈ K(X,B) (i.e., b essentially commutes with g) for all

g ∈ Ch(X).

If X has straight finite decomposition complexity, then these are also
equivalent to

(iv) b ∈ Roe(X,B).

The equivalence of (i) and (ii) is fairly straightforward, and the equiv-
alence of these conditions with (iii) seems to be known by workers in
coarse geometry; we shall however provide a detailed proof for com-
pleteness. The implication (iv) =⇒ (i),(ii),(iii) is straightforward and
holds in complete generality.

The implication (i) ⇒ (iv) was proven by Lange and Rabinovich for
the uniform Roe algebra of Zd (i.e., the case X = Zd, H = l2(X), and
B = B(H) as in Example 2.5 (i)) in [17] (see [19, Proposition 8] for a
proof in English).

The result (ii)⇒ (iv) was claimed by Roe in a remark on page 20 of
[22] under a “finite dimensionality” assumption, but it was later found
that his supposed proof was incomplete ([20]). The present paper is to
the authors’ knowledge the first complete proof of a more general case
(which is even more general than finite asymptotic dimension).

Question 2.9. Is there a uniformly discrete countable metric space
with bounded geometry, for which (i)-(iii) does not imply (iv) of Theo-
rem 2.8?

2.1. Coarse geometric notions. We collect some terminology from
[13, 14, 4].

Definition 2.10. Let X be a proper metric space, let Z,Z ′ ⊆ X, let X
and Y be metric families (i.e. at most countable sets of subsets of X),
and finally let R ≥ 0.

• We shall say that X is uniformly bounded, if supY ∈X diam(Y ) <
∞.
• We shall denote the metric neighbourhood of Z of radius R by
NR(Z) := {z ∈ X | d(z, Z) ≤ R}. We further set

NR(X ) := {NR(Y ) : Y ∈ X}.
• The distance between Z and Z ′ is d(Z,Z ′) := inf{d(z, z′) : z ∈
Z, z′ ∈ Z ′}.
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• A family (Yj)j∈J is R-disjoint if d(Yj, Yj′) > R for all j 6= j′;
we write ⊔

R-disjoint

Yj

for the union of the Yj to indicate that the family is R-disjoint.
• We say that Z R-decomposes over Y, if we can decompose
Z = X0 ∪X1 and

Xi =
⊔

R-disjoint

Xij, i = 0, 1,

such that Xij ∈ Y for all i, j.

• We say that X R-decomposes over Y, denoted X R−→ Y, if
every Y ∈ X R-decomposes over Y.
• We say that X has asymptotic dimension at most n, if for

every r ≥ 0, we can decompose X = X0 ∪ · · · ∪Xn and

Xi =
⊔

r-disjoint

Xij, i = 0, . . . , n,

such that the metric family {Xij | i, j} is uniformly bounded.
• We say that X has straight finite decomposition complexity,

if for any sequence 0 ≤ R1 < R2 < · · · , there exists m ∈ N and

metric families {X} = X0,X1, . . . ,Xm, such that Xi−1
Ri−−→ Xi

for i = 1, . . . ,m, and the family Xm is uniformly bounded.

The notion of straight finite decomposition complexity (sFDC) [4]
is apriori weaker than the original notion of finite decomposition com-
plexity of Guentner, Tessera and Yu [13, 14], see [4, Proposition 2.3].
The definition of finite decomposition complexity uses a certain “de-
composition game”, which effectively means that the choices of Ri can
depend on the previous decompositions X1, . . . ,Xi−1.

Already finite decomposition complexity is weaker than finite asymp-
totic dimension ([14, Theorem 4.1]).

3. Proof of (i) ⇔ (ii)

To prove the main result, we begin with a technical-looking charac-
terization of condition (ii).

Lemma 3.1. Let X be a proper metric space, let H be an X-module,
and let a ∈ B(H). Then ‖[a, f ]‖ < ε for every f ∈ VL∞ (X)1 if and
only if there exists L > 0 such that ‖[a, f ]‖ < ε whenever f ∈ Cb(X)1

is L-Lipschitz.

Remark 3.2. As we shall need to refer to the conclusion of the above
lemma later, we shall fix the following notation. In the setup as in
the above lemma, we write a ∈ Commut(L, ε) if ‖[a, f ]‖ < ε whenever
f ∈ Cb(X)1 is L-Lipschitz.
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Proof. The reverse implication is immediate from the definition of VL (X).
For the forward direction, we use a proof by contradiction. Suppose
for a contradiction that, for every n there exists fn ∈ Cb (X)1 that is
(1/n)-Lipchitz and ‖[a, fn]‖ ≥ ε.

Then evidently, (fn)∞n=1 ∈ VL (X) yet lim∞ ‖[a, fn]‖ ≥ ε. This con-
tradicts the hypothesis that ‖[a,VL∞ (X)1]‖ < ε. �

Proof of Theorem 2.8 (i) ⇒ (ii). Suppose that [b,VL∞ (X)1] = 0 and
let ε > 0. By Lemma 3.1, let b ∈ Commut(L, ε) (in the notation of
Remark 3.2) for some L > 0.

We claim that b has ε-propogation at most L−1. Certainly, suppose
that f, f ′ ∈ Cb (X)1 have L-disjoint supports. We may define g ∈
Cb (X) such that g|suppf ≡ 1, g|suppf ′ ≡ 0 and g is L-Lipschitz. Hence,
‖[b, g]‖ < ε. Consequently,

‖fbf ′‖ = ‖fgbf ′‖ ≤ ‖[b, g]‖+ ‖fbgf ′‖ < ε+ 0,

as required. �

Proof of Theorem 2.8 (ii) ⇒ (i). Suppose that b has finite ε-propogation
for all ε > 0. Assume that b is a contraction. We shall verify the con-
dition in Lemma 3.1. Therefore, let ε > 0 be given. Pick N such that
6/N < ε/2. By the hypothesis, let b have (ε/ (2N2))-propogation at
most R > 0.

Let f ∈ Cb (X)1 be (2RN)−1-Lipschitz. We claim that ‖[b, f ]‖ < ε.
Surely, define sets

A1 := f−1
(
[0, 1

N
]
)
, Ai := f−1

((
i−1
N
, i
N

])
, i = 2, . . . , N.

These sets partition X and, for |i − j| > 1, Ai is (2R)-disjoint from
Aj. We may find a partition of unity e1, . . . , eN ∈ Cb(X) such that ei
is supported in NR/2(Ai). It follows that the supports of ei and ej are
R-disjoint when |i− j| > 1.

Thus,

‖eibej‖ < ε
2N2 .(3.1)

Also,

(3.2) f ≈1/N

N∑
i=1

i
N
ei
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and so

‖[f, b]‖
(3.2)

≤ 2
N

+ ‖[
N∑
i=1

i
N
ei, b]‖

= 2
N

+

∥∥∥∥∥
(

N∑
i=1

i
N
eib

)(
N∑
j=1

ej

)
−

(
N∑
i=1

ei

)(
N∑
j=1

j
N
bej

)∥∥∥∥∥
= 2

N
+

∥∥∥∥∥
N∑

i,j=1

(
i
N
− j

N

)
eibej

∥∥∥∥∥
≤ 2

N
+
∑
|i−j|>1

‖eibej‖+

∥∥∥∥∥∥
∑
|i−j|≤1

(
i
N
− j

N

)
eibej

∥∥∥∥∥∥ .
The terms of the first sum are each dominated by ε

2N2 by (3.1), so
this entire sum is less than ε/2. The second sum can be broken into 4
sums with orthogonal terms (namely, note that when i = j, the terms
vanish; what remains is j = i+ 1 and j = i− 1, and we break each of
these into even and odd parts). Each of the terms of the second sum
has norm at most 1/N ; thus, we have

‖[f, b]‖ < 2
N

+ ε
2

+ 4
N
< ε,

as required. �

4. Proof of (i) ⇒ (iv)

In this section, we prove that (i) ⇒ (iv) in Theorem 2.8. We begin
by establishing a few general functional analytic facts.

Recall that the strong* topology on B(H) is the one in which a net
(aα) converges to a ∈ B(H) if and only if both aα → a and a∗α → a∗ in
the strong operator topology (i.e., ‖aαξ−aξ‖ → 0 and ‖a∗αξ−a∗ξ‖ → 0
for every ξ ∈ H). A conditional expectation from C*-algebra A to a
C*-subalgebra B is a completely positive and contractive projection E
from A to B satisfying

E(b1ab2) = b1E(a)b2

for all b1, b2 ∈ B and a ∈ A.

Lemma 4.1. Let H be a Hilbert space and let G be a subgroup of the
group of unitary operators, which is compact in the strong∗ topology.
Then there is a unique conditional expectation EG : B(H)→ G′ whose
restriction to the unit ball is weak operator topology continuous. It
satisfies

(4.1) ‖EG(a)− a‖ ≤ sup
u∈G
‖[a, u]‖ , a ∈ B(H).
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Proof. Let µG be the normalized Haar measure on G (under the strong∗

topology). Fix a ∈ B(H), and consider the map G → B(H) defined
by u 7→ u∗au. Then, with the strong∗ topology on the domain G and
the weak operator topology on the range B(H), this map is continuous.
We may therefore integrate, defining

EG(a) := WOT-

∫
G

u∗au dµG(u).

(Here, WOT-
∫
G
· dµG indicates the Pettis integral, i.e., EG(a) is the

unique operator satisfying

〈EG(a)ξ, η〉 =

∫
G

〈u∗auξ, η〉,

for all ξ, η ∈ H.) Using invariance of the Haar measure µG, one easily
sees that EG(a) commutes with all of G.

We now check (4.1); for this, set γ := supu∈G ‖[a, u]‖. For η, ξ ∈ H,

|〈(EG(a)− a) η, ξ〉| =
∣∣∣∣∫
G

〈(u∗au− a) η, ξ〉 dµG(u)

∣∣∣∣
≤
∫
G

|〈(u∗au− a) η, ξ〉| dµG(u)

≤
∫
G

‖u∗au− a‖ ‖η‖ ‖ξ‖ dµG(u)

=

∫
G

‖[u, a]‖ ‖η‖ ‖ξ‖ dµG(u)

≤ γ ‖η‖ ‖ξ‖ .

Therefore, (4.1) follows.
In particular, we conclude that if a ∈ G′ then EG(a) = a. It is also

straightforward to see that the function EG is c.p.c., and therefore it is
a conditional expectation.

On the unit ball of B(H), the integral defining EG can be uniformly
approximated in the weak operator topology by (finite) Riemann sums,
which themselves are continuous in the weak operator topology. It
follows that the restriction of EG to the unit ball is continuous using
the weak operator topology.

If E : B(H) → G′ is another conditional expectation whose restric-
tion to the unit ball is weak operator topology continuous, then for a
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contraction a ∈ B(H),

EG(a) = E (EG(a)) (E fixes G′)

= E
(

WOT-

∫
G

u∗au dµG(u)
)

= WOT-

∫
G

E(u∗au) dµG(u) (WOT-continuity of E|B(H)1)

= WOT-

∫
G

u∗E(a)u dµG(u) (E is a conditional expectation)

= EG(E(a))

= E(a) (EG fixes G′).

Thus, E = EG. �

Recall that an atomic abelian von Neumann algebra is a von Neu-
mann algebra isomorphic to l∞(X), for some set X. In the following,
when H = l2(X), then the conditional expectation B(l2(X))→ l∞(X)
consists simply of taking an operator to its diagonal.

Corollary 4.2. Let D ⊂ B(H) be an atomic abelian von Neumann al-
gebra. Then there is a unique conditional expectation ED : B(H)→ D′

whose restriction to the unit ball is weak operator topology continuous.
It satisfies

(4.2) ‖ED(a)− a‖ ≤ sup
x∈D,‖x‖≤1

‖[a, x]‖ , a ∈ B(H).

Proof. Without loss of generality, D contains the identity operator. D
is generated by a family of orthogonal projections (pj)j∈J , whose sum
converges strongly to 1. Define

G :=

{∑
j∈J

(−1)αjpj : (αj)j∈J ∈ (Z/2)J

}
.

This is a strong∗ compact subgroup of the unitary group of D (it is
homeomorphic to (Z/2)J with the product topology), so that Lemma
4.1 applies to it. It is clear that it generates D as a von Neumann
algebra, so that G′ = D′. The conclusion follows from Lemma 4.1. �

Corollary 4.3. Let X be a proper metric space, let H an X-module,
and let a ∈ B (H). Suppose a ∈ Commut(L, ε) for some L, ε > 0 (in the
notation of Remark 3.2). Let (ej)j∈J be a family of positive contractions
from Cb(X) with (2L−1)-disjoint supports, and define e :=

∑
j∈J ej.

Then, with θ(ej)j∈J
from Definition 2.2,

‖eae− θ(ej)j∈J
(a)‖ ≤ ε.
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Proof. Set Aj equal to the support of ej for each j ∈ J . We may find
pairwise disjoint projections pj ∈ B(H), for j ∈ J , such that pj acts as
a unit on ej. Define D to be the von Neumann subalgebra generated
by {pj : j ∈ J} (with unit 1D =

∑
j pj), and let ED : B(H) → D′ be

the unique conditional expectation provided by Corollary 4.2. Then
one finds that for x ∈ B(H), ED(x) =

∑
j∈J pjxpj (converging in the

strong operator topology), and therefore

ED(eae) = θ(ej)j∈J
(a).

Using (2L−1)-disjointness of the family (Aj)j∈J , for f ∈ D1, there

exists a function f̃ ∈ Cb (X)1 that is L-Lipschitz such that

f = 1Df̃ .

Therefore,

f(eae) = f̃ eae

= ef̃ae

≈ε eaf̃e
= (eae)f.

Hence, by Corollary 4.2,

eae ≈ε ED(eae) = θ(ej)j∈J
(a),

as required. �

Definition 4.4. Let X be a proper metric space, H be an X-module,
a ∈ B(H) and let X be a metric family (of subsets of X). We say that
a is block diagonal with respect to X , if there exists an equicontinuous
family (ej)j∈J of positive contractions in Cb(X) with pairwise disjoint
supports, such that a = θ(ej)j∈J

(a), and the support of each ej is con-
tained in some set Yj ∈ X . Furthermore, in this case we shall denote
aYj

:= ejaej and call these operators blocks of a.

The next lemma sets up the “induction step” to be applied in the
context of the decomposition game, in the proof of Theorem 2.8 (i) ⇒
(iv).

Lemma 4.5. Let X be a proper metric space, and let Y be a metric

family such that {X} 4L−1+4−−−−−→ Y for some L > 0. Let H be an X-
module, and let a ∈ B (H). Let ε > 0 be such that a ∈ Commut(L, ε).
Then we can write

a ≈8ε a00 + a01 + a10 + a11,

where each aii′ is of the form θ(fk)k∈K
(gag′) for some contractions g, g′ ∈

Cb(X) and some family (fk)k∈K of 1-Lipschitz positive contractions
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in Cb(X) with disjoint supports, such that the support of each fk is
contained in a set in NL−1+1(Y).

Proof. By the decomposition assumption, we can write

X = X(0) ∪X(1), X(i) =
⊔
j∈J

(4L−1+4)-disjoint

X
(i)
j , i = 0, 1,

with X
(i)
j ∈ Y for each i, j. We may find a partition of unity consisting

of 1-Lipschitz positive contractions e
(i)
j ∈ Cb(X), for i = 0, 1 and j ∈ J ,

such that the support of e
(i)
j is contained in N1(X

(i)
j ). It follows that

for each i, the supports of (e
(i)
j )j∈J are (4L−1 + 2)-disjoint.

For each i = 0, 1, define e(i) :=
∑

j∈J e
(i)
j . Since

a = e(0)ae(0) + e(0)ae(1) + e(1)ae(0) + e(1)ae(1),

it suffices to find aii′ ≈ e(i)ae(i
′) for each i, i′ ∈ {0, 1} with the required

properties. (We will be precise about the degree of approximation – in
short, it depends on whether i and i′ are equal.)

For the case i = i′, Corollary 4.3 shows that

e(i)ae(i) ≈ε θ(e
(i)
j )j∈J

(e(i)ae(i)) =: aii.

The latter operator is clearly block diagonal with respect to N1(Y)
(hence also with respect to NL−1+1(Y)).

Turning now to the case i 6= i′, note that for fixed i, the family(
NL−1+1(X

(i)
j )
)
j∈J

is (2L−1 + 2)-disjoint. For each i, j, there exists

ê
(i)
j ∈ Cb (X) that is L-Lipschitz, that acts as the identity on e

(i)
j , and

is supported on NL−1+1(X
(i)
j ). For each i, define ê(i) :=

∑
j∈J ê

(i)
j . We

have

e(i)ae(i
′) = e(i)ê(i)aê(i

′)e(i
′)

≈2ε e
(i)ê(i

′)aê(i)e(i
′).

For each j, j′ ∈ J , there exists a 1-Lipschitz positive contraction fj,j′ ∈
Cb(X) that is 1 onNL−1+1(X

(i)
j )∩NL−1+1(X

(i′)
j′ ), and is supported on the

metric neighbourhood of this set of radius 1. In particular, the support
of each fj,j′ is contained in a set in NL−1+1(Y), the family of supports
of the family (fj,j′)j,j′∈J is (2L−1)-disjoint, and f :=

∑
j,j′ fj,j′ acts as

an identity on (both sides of) e(i)ê(i
′)aê(i)e(i

′). Applying Corollary 4.3,
we obtain

fe(i)ê(i
′)aê(i)e(i

′)f ≈ε θ(fj,j′ )j,j′∈J

(
e(i)ê(i

′)aê(i)e(i
′)
)
.
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Thus,

e(i)ae(i
′) ≈2ε e

(i)ê(i
′)aê(i)e(i

′)

= fe(i)ê(i
′)aê(i)e(i

′)f

≈ε θ(fj,j′ )j,j′∈J

(
e(i)ê(i

′)aê(i)e(i
′)
)

=: aii′ .

By construction, it is clear that aii′ is block diagonal with respect to
NL−1+1(Y).

Summarizing, we have a ≈ε+3ε+3ε+ε a00 + a10 + a01 + a11, and all the
aii′ are of the right form. �

We now strengthen the previous lemma by allowing an arbitrary met-
ric family in place of {X} and with a a correspondingly block diagonal
operator.

Lemma 4.6. Let X be a proper metric space, and let X and Y be

metric families, such that X 4L−1+4−−−−−→ Y for some L > 0. Let H be an
X-module, and let a ∈ B (H) be block diagonal with respect to X . Let
ε > 0 be such that a ∈ Commut(L, ε). Then we can write

(4.3) a ≈8ε a00 + a01 + a10 + a11,

where each aii′ is of the form θ(fk)k∈K
(gag′) for some contractions g, g′ ∈

Cb(X) and some equicontinuous family (fk)k∈K of positive contractions
in Cb(X) with disjoint supports, such that the support of each fk is
contained in a set in NL−1+1(Y). In particular:

(i) each aii′ is block diagonal with respect to NL−1+1(Y),
(ii) if a ∈ Commut(L′, ε′) for some L′, ε′ > 0, then each aii′ is in

Commut(L′, ε′) as well, and
(iii) if B ⊆ B(H) is a C*-subalgebra such that Cb(X)BCb(X) = B

and B is closed under block cutdowns, and if a is in B, then
each aii′ is in B as well.

Proof. Without loss of generality, both X and Y are closed under tak-
ing subsets. Start by letting (ej) be an equicontinuous family of pos-
itive contractions in Cb(X) with disjoint supports, such that Yj :=
supp(ej) ∈ X . Applying Lemma 4.5 to each aYj

yields

aYj
≈8ε a

j
00 + aj01 + aj10 + aj11,

satisfying the conclusions of that lemma. Set

aii′ :=
∑
j

ajii′ .

Then (4.3) follows from (2.1)
To see that each aii′ has the right form, fix i and i′. For each j, there

exist contractions gj, g
′
j ∈ Cb(X) and a family (fj,k)k∈Kj

of 1-Lipschitz



18 JÁN ŠPAKULA AND AARON TIKUISIS

positive contractions in Cb(Yj) with disjoint supports, such that

ajii′ = θ(fj,k)k∈Kj
(gjag

′
j).

and the support of each fj,k is of the form Y ∩ Z for some Z ∈
NL−1+1(Y).

Then observe that

aii′ = θ
(e

1/4
j fj,k)j∈J,k∈Kj

((
∑
j

e
1/4
j gj)a(

∑
j

e
1/4
j gj)),

where the family appearing in this block-cutdown formula, namely

(e
1/4
j fj,k)j∈J,k∈Kj

is equicontinuous and contained in NL−1+1(Y).
(i)-(ii) are immediate consequences of the form that aii′ takes. Since

multiplication by Cb(X) preserves block structure, and using (2.1), (iii)
can also be seen to be a consequence of the form that aii′ takes. �

We have seen in the previous lemma that we will need to work with
“thickened” metric families, so we record the following straightforward
observation.

Lemma 4.7. Let X and Y be metric families, R, S ≥ 0. Assume that

X R−→ Y and that R− 2S ≥ 0. Then NS(X )
R−2S−−−−→ NS(Y).

Proof of Theorem 2.8 (i) ⇒ (iv). Recall that we are given an operator
b on an X-module H satisfying [b, f ] = 0 for all f ∈ VL∞(X). Given
ε > 0, our task is to produce a finite propogation operator in B which
is ε-far from b. Lemma 3.1 provides us with Ln for every

εn := ε/(2 · 8n),

such that b ∈ Commut(Ln, εn). Let

Rn := 4(L−1
n + 1) + 2(L−1

n−1 + 1) + · · ·+ 2(L−1
1 + 1).

As X has straight finite decomposition complexity (see Definition 2.10),

we obtain metric families {X} = X0,X1, . . . ,Xm, such that Xn−1
Rn−−→

Xn for n ∈ {1, . . . ,m} and Xm is uniformly bounded. Note that Lemma
4.7 gives us that

N(L−1
n−1+1)+···+(L−1

1 +1)(Xn−1)
4(L−1

n +1)−−−−−−→ N(L−1
n +1)+···+(L−1

1 +1)(Xn).

Thus, we can inductively apply Lemma 4.6, with Ln, εn, the operators
obtained in the previous iteration, and metric families from the above
display. After m steps, we will have approximated the operator b by an
operator b′ which is a sum of finitely many (4m to be precise) operators
in B which are block diagonal with respect to

N(L−1
m +1)+···+(L−1

1 +1)(Xm).
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Since Xm is uniformly bounded, so is the above family, and therefore
operators which are block diagonal with respect to it have finite pro-
pogation; consequently, b′ ∈ Roe(B,X). Tracing through the estimates
given by Lemma 4.6, we compute that the distance from b to b′ is at
most

8ε1 + 4 (8ε2 + 4 (8ε3 + 4 (. . . ))) = ε
(

1
2

+ 1
4

+ 1
8

+ . . .
)

= ε.

This finishes the proof. �

Remark 4.8. When the asymptotic dimension of X is at most d <
∞, the induction component of the above proof can be removed: one
can use the idea of Lemma 4.5 with a decomposition of X into d + 1
(instead of 2) uniformly bounded, (4L−1 + 4)-disjoint families, and
correspondingly approximate a be a sum of (d + 1)2 block diagonal
operators.

5. Higson functions

To prepare to prove (i) ⇔ (iii) of Theorem 2.8, we begin by consid-
ering a special class of Higson functions which are more closely related
to our definition of VL∞(X).

Definition 5.1. Let X be a proper metric space. A function g ∈
Cb(X) is a Lipschitz–Higson function if, for every L > 0, there exists
a compact set A ⊆ X such that g|X\A is L-Lipschitz. The set of all
Lipschitz–Higson functions on X is denoted Clh(X).

Fix a proper metric space X and a point x0 ∈ X. For R > 0, define
eR ∈ C0(X) by

(5.1) eR(x) := max{0, 1− d(x,BR(x0))/R}.

Observe that eR is R−1-Lipschitz, is 1 on B̄R(x0), and vanishes outside
of B2R(x0).

Lemma 5.2. Ch(X) = Clh(X) + C0(X).

Proof. The inclusion ⊇ is straightforward. To go the other direction,
let g ∈ Ch(X). We shall produce f ∈ Clh(X) such that f − g ∈ C0(X).
Without loss of generality, g is a positive contraction. Fix a point
x0 ∈ X.

Recursively define R0 := 0 and Rn ≥ max{2(n+1), 2Rn−1} such that
if x, y ∈ X\BRn(x0) and d(x, y) < n + 1 then |g(x) − g(y)| < 1

2(n+1)
.

Using eR from (5.1), set

g1 := eR1g, gn :=
(
eRn − eRn−1

)
g, n ≥ 2.
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Note that, for n ≥ 2, gn is such that if d(x, y) < n then |gn(x)−gn(y)| <
1
n
, and that

(5.2) g =
∞∑
n=1

gn,

converging pointwise (as at each point, at most two terms of the sum
are nonzero).

Define f1 := g1.
Fix n ≥ 2; we shall define a function fn which approximates gn, but

is more Lipschitz. Define

Ai := g−1
n

[
i
n
, 1
]
, i = 1, . . . , n,

and define ci ∈ Cb(X) by

ci(x) := max
{

1− d(x,Ai)
n

, 0
}
, i = 1, . . . , n,

which is (1/n)-Lipschitz. Set

fn :=
1

n

n∑
i=1

ci,

which is also (1/n)-Lipschitz, as it is an average of such. Moreover,
‖fn− gn‖ ≤ 1

n
, and the support of gn is contained in the support of fn.

Set f :=
∑∞

n=1 fn; as in (5.2), at each point, at most two terms of the
sum are nonzero. Using this fact, one sees that

∑∞
n=n0

fn is (2n0)
−1-

Lipschitz, for all n0 ≥ 2. Moreover, f agrees with this tail sum outside
of B2Rn0−1 , which proves that f ∈ Clh(X).

Similarly, since f − g agrees with the tail
∑∞

n=n0
(fn − gn) outside

of B2Rn0−1 , and this tail has norm at most 2
n
, it follows that f − g ∈

C0(X). �

Remark 5.3. We note in passing that, due to the previous lemma, the
Higson corona νX (defined as the compact Hausdorff space satisfying
C(νX) ∼= Ch(X)/C0(X)) satisfies

C(νX) ∼= Clh(X)/C0(X).

Now we set out two constructions to be used, producing a Lipschitz–
Higson function from a very Lipschitz sequence and vice versa. Neither
construction is canonical: both depend on a number of choices.

Let (fk)
∞
k=1 ∈ VL(X), let (fki

)∞i=1 be a subsequence, and let (Ri)
∞
i=0 ⊂

(0,∞) be a sequence such that Ri+1 ≥ 6Ri for each i. From these, and
using eR from (5.1), define

(5.3) gx0,(fki
)∞i=1,(Ri)∞i=0

:=
∞∑
i=1

fki
(eRi
− e3Ri−1

) ∈ Cb(X).
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Note that the functions in the summation are pairwise disjoint, so we
can treat the series as converging pointwise. It is straightforward to
see that ‖gx0,(fki

)∞i=1,(Ri)∞i=0
‖ ≤ ‖(fk)∞k=1‖.

Lemma 5.4. Fix a proper metric space X and a point x0 ∈ X. For
(fk)

∞
k=1 ∈ VL(X), a subsequence (fki

)∞i=1, and a sequence (Ri)
∞
i=0 ⊂

(0,∞) such that Ri+1 ≥ 6Ri for each i, let gx0,(fki
)∞i=1,(Ri)∞i=0

be as defined

in (5.3). Then

gx0,(fki
)∞i=1,(Ri)∞i=0

∈ Clh(X).

Proof. Without loss of generality, we may assume ‖fk‖ ≤ 1 for all k.
For ease of notation, we set

g := gx0,(fki
)∞i=1,(Ri)∞i=0

.

As in the definition of a Lipschitz–Higson function, let L > 0 be
given. Pick i0 such that 3Ri0−1 > 2/L and such that fi is (L/2)-
Lipschitz for all i ≥ i0. We will be done when we show that the
restriction of g to X\BRi0

(x0) is L-Lipschitz.
For i ≥ i0, eRi

− e3Ri−1
is (L/2)-Lipschitz, so that the product

hi := fki
(eRi
− e3Ri−1

)

is L-Lipschitz. For x, y ∈ X\BRi0
(x0), note that, by the definition of

eR and the condition Ri+1 ≥ 6Ri, that at least one of the following
conditions holds.

(i) d(x, y) ≥ Ri0 , or
(ii) There exists i such that g(x) = hi(x) and g(y) = hi(y).

In the first case,

|g(x)− g(y)| ≤ 2‖g‖ = 2 ≤ 3LRi0−1 ≤ 3LRi0 ≤ Ld(x, y).

In the second case, since hi is L-Lipschitz, it follows that |g(x) −
g(y)| ≤ Ld(x, y). �

Next, let g ∈ Ch(X) be given, along with a sequence (Rk) ∈ (0,∞)
such that limk→∞Rk =∞. From this data, define (using eR from (5.1))
(5.4)
Fx0,g,(Rk)∞k=1

:= (fk)
∞
k=1 ∈ l∞(N, l∞(X)) where fk := (1− eRk

)g.

Lemma 5.5. Fix a proper metric space X and a point x0 ∈ X. For
a Higson function g ∈ Clh(X) and a sequence (Rk) ∈ (0,∞) such that
limk→∞Rk =∞, let Fg,(Rk)∞k=1

be as defined in (5.4). Then

Fg,(Rk)∞k=1
∈ VL(X).

Proof. Without loss of generality, we may assume ‖g‖ ≤ 1. As in the
definition of VL(X), let L > 0 be given. Pick M ≥ 2/L such that g
is (L/2)-Lipschitz on X\BM(x0). Pick k0 such that Rk ≥ M for all
k ≥ k0. For k ≥ k0, using the fact that (1 − eRk

) is (L/2)-Lipschitz
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and vanishes on BM(x0), it is easy to see that fk = g(1 − eRk
) is

L-Lipschitz. �

Proof of Theorem 2.8 (i) ⇒ (iii). By Lemma 5.2, (iii) is equivalent to
[g, b] ∈ K(X,B) for all g ∈ Clh(X), which is the statement we will prove
assuming (i). Assume that [b, g] 6∈ K(X,B) for some g ∈ Clh(X). Set
ε := ‖[b, g]+K(X,B)‖. Fix a point x0 ∈ X, let (Rk)

∞
i=1 ⊂ (0,∞) be any

sequence such that limi→∞Ri = ∞, and define (fk)
∞
k=1 := Fx0,g,(Rk)∞k=1

as in (5.4), that is,

fk := (1− eRk
)g.

By Lemma 5.5, (fk)
∞
k=1 ∈ VL(X). Since eRk

∈ C0(X) for each k, using
the condition (2.2) we obtain

[fk, b] = [g, b]− [eRk
g, b] ∈ [g, b] +K(X,B)

and therefore by the definition of ε,

‖[fk, b]‖ ≥ ε.

Consequently, limk→∞ ‖[fk, b]‖ ≥ ε, so that b does not commute with
the image of (fk)

∞
k=1 in VL∞(X). �

Before we embark on the proof of Theorem 2.8 (iii) =⇒ (i), note
that as a consequence of the Spectral Theorem, we may extend the
X-module structure on B(H) from bounded continuous functions to
bounded Borel functions on X. This is convenient in the following
proof, since it allows us to easily “cut up” operators on H using charac-
teristic functions of Borel sets in X. (Of course, we cannot assume the
algebra B is closed under multiplication by these bounded Borel func-
tions.) We opt for this approach for the sake of readability, although
it is possible to modify the proof to only use continuous functions for
the price of more approximations.

Proof of Theorem 2.8 (iii) ⇒ (i). Since each of VL∞(X), Ch(X), and
K(X,B) is ∗-closed, it suffices to prove the theorem in the case that b
is self-adjoint. We henceforth assume that b = b∗. Fix a point x0 ∈ X,
and to shorten notation in this proof, set

BR := BR(x0).

For each R > 0, we will use χBR
to denote the support projection of a

function whose cozero set is BR.
Assume that [b, f ] 6= 0 for some f ∈ VL∞(X). Then in fact, [b, f ] 6= 0

for some f = (fk)
∞
k=1 for which each fk is a self-adjoint contraction; we

fix this sequence. Let 0 < ε < ‖[b, f ]‖.
Consider now two cases.
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Case 1. There exists R0 > 0 such that for all S > 0 there are
infinitely many k for which

‖χBR0
[b, fk](1− χBS

)‖ > ε

5
.

Roughly, for this case, we will construct some g (of the form (5.3))
such that the block-column of [b, g] corresponding to BR0 doesn’t con-
verge to 0 at ∞.

Note that as k →∞, fk|BR0
tends towards being constant; so without

loss of generality, we may assume that fk|BR0
is constant. Adding a

scalar to each fk, we arrive at another sequence
(
f̂k

)∞
n=1

with the same

properties as (fk)
∞
n=1 (that is, self-adjoint and satisfying the Case 1

condition), such that f̂k|BR0
≡ 0. From this it follows that χBR0

[b, f̂k] =

χBR0
bf̂k for all n, so that we have: for all S > 0 there exist infinitely

many k such that

‖χBR0
bf̂k(1− χBS

)‖ > ε

5
.

Using R0 as above and k0 := 0, recursively choose k1 < k2 < · · ·
and R1 ≥ 6R0, R2 ≥ 6R1, . . . as follows. Having chosen Ri−1, pick
ki > ki−1 such that

‖χBR0
af̂ki

(1− χB6Ri−1
)‖ > ε

5
and ‖f̂ki

χB6Ri−1
‖ ≤ ε

10‖a‖
.

(The second inequality can be arranged as f̂k converge to 0 on any
given bounded subset of X.) Then, since (eR)∞R=1 converges strongly
to 1, pick Ri ≥ 6Ri−1 such that

‖χBR0
bf̂ki

(1− χB6Ri−1
)eRi
‖ > ε

5
.

Since eRi
−e3Ri−1

differs from (1−χB6Ri−1
)eRi

only on B6Ri−1
, it follows

that

‖χBR0
bf̂ki

(eRi
− e3Ri−1

)‖ > ε

10
.

Using these recursive choices, define g := gx0,(f̂ki
)∞i=1,(Ri)∞i=0

∈ Clh(X) ⊆
Ch(X) by Lemma 5.4. If [b, g] ∈ K(X,B), then ‖[b, g](1 − χBS

)‖ → 0
as S →∞. However, given S ≥ R0, there exists i such that 3Ri−1 > S.
Then

‖[b, g](1− χBS
)‖ ≥ ‖χBR0

[b, g](1− χBS
)(χB2Ri

− χB3Ri−1
)‖

= ‖χBR0
bf̂ki

(eRi
− e3Ri−1

)‖

>
ε

10
,

which is a contradiction. This concludes the proof in Case 1.
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Case 2. For every R > 0, there exists S > 0 such that, for all but
finitely many k ∈ N,

‖χBR
[b, fk](1− χBS

)‖ ≤ ε

5
.

Without loss of generality, we may assume that S > R.
Roughly, for this case, we will construct some g (of the form (5.3))

such that the certain blocks on the diagonal of [b, g] don’t converge to
0 at ∞.

In preparation for this, suppose we are given R > 0 and K ∈ N. Let
S be given by the Case 2 property. Then there exists k ≥ K such that

‖χBR
[b, fk](1− χBS

)‖ ≤ ε

5
,

and in addition, ‖[b, fk]‖ > ε and fk|BS
is ε

5
-approximately constant.

From the latter property, it follows that there is a scalar γ such that
fk|BS

≈ε/10 γ, so that

(5.5) ‖χBS
[b, fk]χBS

‖ ≤ 2 · ε
10
‖b‖ ≤ ε

5
.

Since b and fk are self-adjoint,

(5.6) ‖(1− χBS
)[b, fk]χBR

)‖ = ‖χBR
[b, fk](1− χBS

)‖ ≤ ε

5
.

We now cut up the operator T = [b, fk] as follows:

χBR
TχBS

χBR
T (1− χBS

)

(χBS
− χBR

)TχBR

(1− χBS
)TχBR

(1− χBR
)T (1− χBR

)

BR

BS

�
@

@
�

�
@

@
�

BR

BS

@�

�@

@�

�@

That is, we use the equality

T = (1− χBR
)T (1− χBR

) + χBR
TχBS

+ χBR
T (1− χBS

)

+ (χBS
− χBR

)TχBR
+ (1− χBS

)TχBR
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and the reverse triangle inequality to deduce

‖(1− χBR
)[b, fk](1− χBR

)‖
≥ ‖[b, fk]‖ −

(
‖χBR

[b, fk]χBS
‖+ ‖χBR

[b, fk](1− χBS
)‖

+‖(χBS
− χBR

)[b, fk]χBR
‖+ ‖(1− χBS

)[b, fk]χBR
‖
)

(5.5),(5.6)

≥ ‖[b, fk]‖ − 4 · ε
5

> ε− 4ε

5

=
ε

5
.(5.7)

In summary, we have shown that for every R > 0 and K ∈ N, there
exists k ≥ K such that

(5.8) ‖(1− χBR
)[b, fk](1− χBR

)‖ > ε

5
.

Now, start with R0 := 1 and k0 := 0, and (as in Case 1) we will
choose k1 < k2 < · · · and R1 ≥ 6R0, R2 ≥ 6R1, . . . recursively. Given
Ri−1, pick k > ki−1 satisfying (5.8) for R := 6Ri−1, and set ki equal to
this k. That is, ki > ki−1 satisfies

‖(1− χB6Ri−1
)[b, fki

](1− χB6Ri−1
)‖ > ε

5
.

Then, since (χBR
)∞R=1 converges strongly to 1, there exists Ri ≥ 6Ri−1

such that

‖χBRi
(1− χB6Ri−1

)[b, fki
](1− χB6Ri−1

)χBRi
‖ > ε

5
.

Note that χBRi
(1− χB6Ri−1

) = χBRi
− χB6Ri−1

.

Using these recursive choices, define g := gx0,(fki
)∞i=1,(Ri)∞i=0

∈ Clh(X) ⊆
Ch(X) by Lemma 5.4. If [b, g] ∈ K(X,B), then ‖[b, g](1 − χBS

)‖ → 0
as S →∞. However, given S > 0, there exists i such that 6Ri−1 > S.
Then

‖[b, g] (1− χBS
)‖ ≥

∥∥∥(χBRi
− χB6Ri−1

)[b, g](χBRi
− χB6Ri−1

)
∥∥∥

=
∥∥∥(χBRi

− χB6Ri−1
)[b, fki

](χBRi
− χB6Ri−1

)
∥∥∥

>
ε

5
,

again a contradiction. This concludes the proof. �

6. More about VL∞ (X)

6.1. To what extent does VL∞ (X) determine X?

Definition 6.1. Let X and Y be metric spaces. We say that a (not
necessarily continuous) function φ : X → Y is:
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• bornologous, if for every R ≥ 0 there exists S ≥ 0, such that
for all x, y ∈ X, d(x, y) ≤ R implies d(φ(x), φ(y)) ≤ S;
• cobounded, if f−1(y) is bounded for every y ∈ Y ;
• coarse, if it is both cobounded and bornologous;
• a coarse equivalence, if it is bornologous, and there exists a

bornologous ψ : Y → X, such that both ψ◦φ and φ◦ψ are uni-
formly close to the identity maps (i.e. supx∈X d(ψ ◦ φ(x), x) <
∞ and supy∈Y d(φ ◦ψ(y), y) <∞). Note that in this case both
φ and ψ are automatically coarse;
• locally Lipschitz, if there exist δ > 0 and T ≥ 0, such that
d(x, y) ≤ δ implies d(f(x), f(y)) ≤ Td(x, y), x, y ∈ X.
• a Lip-coarse equivalence, if it is a coarse equivalence, it is lo-

cally Lipschitz, and in the definition of coarse equivalence, ψ
can be chosen to be locally Lipschitz as well.

Note that traditionally, coarse geometry does not concern itself with
a local behaviour. However, as our main tool in this piece are Lipschitz
functions, we will insist that the maps involved are locally Lipschitz.
On the other hand, in the key setting in which the metric spaces in-
volved are uniformly discrete, this requirement is automatic, and thus
can be ignored.

Proposition 6.2. Let X be a proper metric space. VL∞ (X) is a
Lip-coarse invariant for X. More precisely, if X and Y are proper
metric spaces which are Lip-coarsely equivalent via a (locally Lipschitz)
map φ : X → Y , then composition by φ induces a ∗-isomorphism
VL∞ (Y )→ VL∞ (X).

Proof. Suppose that X, Y are Lip-coarsely equivalent, so that there are
locally Lipschitz coarse maps φ : X → Y and ψ : Y → X such that
the graphs of φ ◦ψ and ψ ◦ φ are uniformly bounded. Denote by δ > 0
and T ≥ 0 the constants of local Lipschitzness of φ. As locally Lips-
chitz maps are continuous, φ and ψ induce maps φ∗ : l∞ (N, Cb(Y ))→
l∞ (N, Cb(X)) and ψ∗ : l∞ (N, Cb(X))→ l∞ (N, Cb(Y )).

First we show that φ∗ (VL (Y )) ⊆ VL (X). Surely, let (fn)∞n=1 ∈
VL (Y ) with ‖(fn)∞n=1‖ ≤ 1. Let L > 0. Since φ is a coarse map,
there exists S > 0 such that if x, y ∈ X satisfy d(x, y) ≤ 2/L then
d(φ(x), φ(y)) < S. Without loss of generality, we can assume that
S > δT . Since (fn)∞n=1 ∈ VL(Y ), there exists n0 such that fn is (Lδ/S)-
Lipschitz for all n ≥ n0. For n ≥ n0, let us show that fn ◦ φ is
L-Lipschitz. Let x, y ∈ X, there are three cases:

• If d(x, y) > 2/L then |fn(x)− fn(y)| ≤ 2‖fn‖ < Ld(x, y).
• If δ ≤ d(x, y) ≤ 2/L, then d(φ(x), φ(y)) < S. Since fn is

(Lδ/S)-Lipschitz,

‖fn ◦ φ(x)− fn ◦ φ(y)‖ ≤ Lδ ≤ Ld(x, y).
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• If d(x, y) < δ, then

‖fn(φ(x))− fn(φ(y))‖ ≤ Lδ

S
d(φ(x), φ(y)) ≤ LδT

S
d(x, y) < Ld(x, y).

Thus, φ∗ induces a map θφ : VL∞ (Y )→ VL∞ (X); likewise, ψ∗ induces
a map θψ : VL∞ (X) → VL∞ (Y ). Let us show that these maps are
inverses. By the symmetry of their definition, it suffices to show that
θψ ◦ θφ = idVL∞(Y ).

Let (fn)∞n=1 ∈ VL∞ (Y ). Let Γ (φ ◦ ψ) ⊂ Y × Y denote the graph of
φ ◦ ψ. Since this is uniformly bounded, given ε > 0, we may find n0

such that, for n ≥ n0 and (x, y) ∈ Γ (φ ◦ ψ),

|fn (x)− fn (y) | ≤ ε.

In other words, for n ≥ n0, |fn (x)− fn (φ (ψ (x))) | ≤ ε, and thus,

‖fn − ψ∗ ◦ φ∗ (fn) ‖ ≤ ε.

Consequently, ‖(fn)∞n=1 − θψ ◦ θφ ((fn)∞n=1)‖VL∞(Y ) ≤ ε. Since ε is arbi-

trary, θψ ◦ θφ ((fn)∞n=1) = (fn)∞n=1 in VL∞(Y ). �

Lemma 6.3. Let X be a metric space, and let E ⊆ X × X. The
following are equivalent:

(i) E is uniformly bounded.
(ii) For every (fn)∞n=1 ∈ VL (X) and ε > 0, there exists n0 such

that, if n ≥ n0 and (x, y) ∈ E then |fn (x)− fn (y) | < ε.
(iii) For every (fn)∞n=1 ∈ VL (X), there exists n1 such that, if (x, y) ∈

E then |fn1 (x)− fn1 (y) | < 1.

Proof. (i) ⇒ (ii) is by the definition of VL (X). (ii) ⇒ (iii) is trivial.
For (iii)⇒ (i), let E ⊆ X×X be a set that isn’t uniformly bounded,

and let us show that there exists (fn)∞n=1 ∈ VL (X) such that, for all n
there exists (xn, yn)∞n=1 ∈ E such that |fn (x)− fn (y) | = 1.

For each n, there exists (xn, yn) ∈ E such that d(x, y) > n. Thus
there exists a (1/n)-Lipschitz function fn : X → R such that fn(xn) =
0, and fn(yn) = 1. It follows that (fn)∞n=1 ∈ VL (X), showing that (iii)
doesn’t hold. �

Proposition 6.4. Let X, Y be metric spaces. Let φ : Y → X be a
function.

(i) If φ∗ (VL (X)) ⊆ VL (Y ) then φ is a bornologous map;
(ii) If, moreover, the induced map θφ : VL∞ (X)→ VL∞ (Y ) is an

isomorphism, then φ is a coarse equivalence.
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Proof. (i): Let R > 0. We must show that E := {(φ(x), φ(y)) : x, y ∈
X, d(x, y) < R} is uniformly bounded. To this end, we will verify
Lemma 6.3 (iii) for this set. Therefore, let (fn)∞n=1 ∈ VL (X).

Since φ∗ ((fn)∞n=1) ∈ VL (Y ), there exists n1 such that fn1 ◦ φ is
R−1-Lipschitz. Thus for (φ(x), φ(y)) ∈ E, i.e., d(x, y) < R,

|fn1(φ(x))− fn1(φ(x))| = |fn1 ◦ φ(x)− fn1 ◦ φ(y)| < 1,

as required.

(ii): We must show two things: (a) for every R > 0, the set {(x, y) ∈
Y × Y : d(φ(x), φ(y)) < R} is uniformly bounded, and (b) there ex-
ists R > 0 such that, for all x ∈ X, there exists y ∈ Y such that
d (x, φ (y)) < R.

(a): Let R ≥ 0 be given. We will verify Lemma 6.3 (iii) for E :=
{(x, y) ∈ X×X : d(φ(x), φ(y)) < R}. Therefore, let (fn)∞n=1 ∈ VL (X).

Since θφ is surjective, there exists (gn)∞n=1 ∈ VL (Y ) such that lim∞ ‖fn−
gn◦φ‖ = 0. By Lemma 6.3 (i)⇒ (ii), there exists n0 such that, if n ≥ n0

then gn is (3R)−1-Lipschitz. Pick n ≥ n0 such that ‖fn − gn ◦ φ‖ < 1
3
.

Now, let (x, y) ∈ E, i.e., d(φ(x), φ(y)) < R. Then

fn (x) ≈1/3 gn (φ (x)) ≈1/3 gn (φ (y)) ≈1/3 fn (y) ,

as required.
(b): Proof by contradiction. Suppose for a contradiction that, for

every n there exists xn ∈ X such that for all y ∈ Y ,

(xn, φ (y)) ≥ n.

Thus, there exists a (1/n)-Lipschitz function fn : X → [0, 1] such
that fn(xn) = 1 and fn(φ(y)) = 0 for all y ∈ Y . Putting these together,
we obtain (fn)∞n=1 ∈ VL (X) and ‖fn‖ = 1 (since fn (xn) = 1), so that
‖(fn)∞n=1‖ = 1 in VL∞ (X). However, since fn (φ (y)) = 0 for all y ∈ Y ,
it follows that θφ ((fn)∞n=1) = 0, which contradicts injectivity of θφ. �

In other words, when VL∞ (X) ∼= VL∞ (Y ), and the isomorphism
comes from a map between Y and X, it follows that X and Y are
coarsely equivalent. Here is the more interesting question:

Question 6.5. Let X, Y be uniformly discrete metric spaces. If VL∞ (X) ∼=
VL∞ (Y ), must X and Y be coarsely equivalent?

6.2. The nuclear dimension of VL∞ (X). VL (X) and VL∞ (X) are
commutative unital C*-algebras, and therefore by Gelfand’s Theorem,
each are algebras of continuous functions on a compact Hausdorff space,
namely the Gelfand spectrum of the respective algebras. As these C*-
algebras are nonseparable, their spectra are nonmetrizable. Here we
show a relationship between the asymptotic dimension of X and the
covering dimension (suitably interpreted) of these spectra. In fact we
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use the nuclear dimension of the algebras, which (for the spectra) corre-
sponds to a version of covering dimension which is slightly modified (in
this nonseparable case) from the original definition. The modification
is as follows. Let Y be a locally compact Hausdorff space; call an open
set U ⊆ Y a preimage-open set if it is the preimage of an open subset of
R under a continuous function Y → R. Then the nuclear dimension of
C0(Y ) is equal to the smallest number d such that every finite cover of
Y consisting of preimage-open sets has a (d+ 1)-colourable refinement
consisting of preimage-open sets (see the proof of [16, Proposition 3.3],
and [28, Proposition 2.4]; this fact is alluded to in the discussion be-
fore [28, Proposition 2.4]). (In the second countable situation, or more
generally when Y is a normal space, all open sets are preimage-open,
which is why nuclear dimension coincides with the usual definition of
covering dimension in this case.)

Definition 6.6. ([10, §1.E]) Let X be a metric space. Then the as-
ymptotic dimension of X is at most d ∈ N, written asdim(X) ≤ d, if

for every R > 0, there exists a cover of X of the form (U
(i)
j )i=0,...,d; j∈J ,

such that for each i = 0, . . . , d, the family (U
(i)
j )j∈J is R-disjoint and

uniformly bounded.

Proposition 6.7. Let X be a metric space. dimnuc VL (X) ≤ asdim(X)
and dimnuc VL∞ (X) ≤ asdim(X).

Proof. As the nuclear dimension decreases when passing to quotients,
it suffices to prove the first statement.

Set d := asdim(X). Let F ⊂ VL(X) be a finite set and let ε > 0 be
given.

Using the definition of asymptotic dimension in a fairly straightfor-
ward way, for each n ∈ N, we may find an infinite partition of unity

(e
(i)
j (n))j∈J(n); i=0,...,d, such that:

(i) for each i, (e
(i)
j (n))j∈J(n) are pairwise orthogonal,

(ii) each e
(i)
j is (1/n)-Lipschitz, and

(iii) there is a uniform bound, S(n), on the diameters of the sup-

ports of e
(i)
j (n) (allowed to depend only on n).

Let us also pick a point x
(i)
j (n) inside the support of e

(i)
j (n), for each

i, j, and n. For n = 0, define J(0) := X, e
(0)
j (0)(x) := δj,x, e

(i)
j (0) := 0

for i > 0, S(0) := 0, and x
(i)
j (0) = j ∈ X.

Define a ∗-homomorphism ψn = (ψ
(0)
n , . . . , ψ

(d)
n ) : Cb(X)→

⊕d
i=0 l

∞(J(n))

coordinatewise by evaluation at x
(i)
j (n). For i = 0, . . . , n, define a ∗-

homomorphism φ
(i)
n : l∞(J(n))→ Cb(X) by

φ(i)
n (λ) =

∑
j∈J(n)

λ(j)e
(i)
j (n),
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with the sum converging pointwise, since in fact at each point x ∈ X,
at most one summand is nonzero (by condition (i)). Note that if f ∈
Cb(X) is (ε/S(n))-Lipschitz then

(6.1)
d∑
i=0

φ(i)
n ◦ ψ(i)

n (f) ≈ε f.

Let

F = {(fi,k)∞k=1 : i = 1, . . . ,m}.

For each k, we may find some nk ≥ 0 such that fi,k has (ε/S(nk))-
Lipschitz for all i = 1, . . . ,m. Since F ⊆ VL(X), we can pick these nk
such that they converge to ∞.

We now define a ∗-homomorphism

Ψ := (ψnk
)∞k=1 : l∞(N, l∞(X))→

∏
k

d⊕
i=0

l∞(J(nk)) ∼=
d⊕
i=0

∏
k

l∞(J(nk));

we may write Ψ = (Ψ(0), . . . ,Ψ(d)). For i = 0, . . . , d, define a ∗-
homomorphism

Φ(i) := (φ(i)
nk

)∞k=1 :
∏
k

l∞(J(nk))→ l∞(N, l∞(X)).

Since nk → ∞, we see that the image of Φ(i) is in fact contained in
VL(X). Moreover, by (6.1) and our choice of nk, we find that

d∑
i=0

Φ(i) ◦Ψ(i)(f) ≈ε f

for f ∈ F . Since
∏

k l
∞(J(nk)) has nuclear dimension zero, this is

sufficient to prove that VL(X) has nuclear dimension at most d. �

We have an argument to get inequalities in the other direction, under
the hypothesis that X has finite asymptotic dimension. For this, we
begin with the following lemma.

Lemma 6.8. Let X be a set and let η > 0. Let f1, . . . , fm, e1, . . . , en :
X → [0,∞), and λi,j ∈ [0,∞) for i = 1, . . . , n, j = 1, . . . ,m. Suppose
that fj ≈η

∑n
i=1 λi,jei for each j and

∑m
j=1 λi,j = 1 for each i. Then

for each i, there exists j(i) such that

{x : ei(x) > mη} ⊆ {x : fj(i)(x) > 0}.
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Proof. Fix i. Since
∑m

j=1 λi,j = 1, there exists some j = j(i) such that

λi,j ≥ 1/m. For x ∈ X such that fj(x) = 0, it follows that

1

m
ei(x) ≤ λi,jei(x)

≤
n∑

i′=1

λi′,jei′(x)

≤ fj(x) + η = η.

This shows that ei(x) ≤ mη, as required. �

Theorem 6.9. If X has finite asymptotic dimension, then

asdim(X) = dimnuc VL(X) = dimnuc VL∞(X).

Proof. Set d := dimnuc VL∞(X). By Proposition 6.7, it suffices to show
that asdim(X) ≤ d. Let R > 0 be given, and we will partition X into
(d+ 1) uniformly bounded, R-disjoint families.

By hypothesis, let asdim(X) ≤ m−1. Then from this, there exists a
partition of unity g1, . . . , gm ∈ VL∞(X), such that gj = (gj,l)

∞
l=1 where

for each j, l, the support of gj,l decomposes as an l-disjoint, uniformly
bounded family of subsets of X.

Set

η :=
1

3(d+ 1)m
.

The only nonzero order zero maps from a matrix algebra into a com-
mutative algebra occur when the matrix algebra is one-dimensional
(this follows from [27, Proposition 3.2 (a)]). Hence, dimnuc VL(X) ≤ d
implies that there exists s ∈ N, a c.p.c. map ψ = (ψ(0), . . . , ψ(d)) :

VL∞(X)→
⊕d

i=0 C⊕s, and c.p.c. order zero maps φ(i) : Cs → VL∞(X)
such that

gj ≈η
m∑
i=0

φ(i) ◦ ψ(i)(gj) and 1VL∞(X) ≈1/2

m∑
i=0

φ(i) ◦ ψ(i)(1).

By rescaling, we may assume that ψ(i)(1VL∞(X)) = (1, . . . , 1). Write

ψ(i)(gj) = (λ(i,1),j, . . . , λ(i,s),j) ∈ [0,∞)s (since ψ is positive). By linear-

ity, looking at the i′ component of ψ(i)(1), we have
m∑
j=1

λ(i,i′),j = 1.

Each map φ(i) lifts to a c.p.c. order zero map (φ
(i)
l )∞l=1 : Cs → VL(X),

by [16, Remark 2.4]. For all but finitely many l, we have
(6.2)

gj,l ≈η
d∑
i=0

φ
(i)
l (λ(i,1),j, . . . , λ(i,s),j) and 1Cb(X) ≈1/2

d∑
i=0

φ
(i)
l (1, . . . , 1).
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Fix l ≥ R for which (6.2) holds, and such that the image of each mini-

mal projection in Cs under φ
(i)
l is (mη/L)-Lipschitz. Write e(i,1), . . . , e(i,s)

for these images under φ
(i)
l of the minimal projections in Cs, and write

fj := gj,l; thus (6.2) becomes

(6.3) fj ≈η
d∑
i=0

s∑
i′=1

λ(i,i′),je(i,i′) and 1 ≈1/2

d∑
i=0

s∑
i′=1

e(i,i′).

We now apply Lemma 6.8 with (i, i′), i = 0, . . . , d, i′ = 1, . . . , s in
place of the index i = 1, . . . , n. This tells us that for each i = 0, . . . , d
and i′ = 1, . . . , s, there exists some j(i, i′) such that

Bi,i′ := {x ∈ X : e(i,i′) > mη} ⊆ {x ∈ X : fj(i,i′)(x) > 0}.
Since the support of fj(i,i′) (= gj(i,i′),l) decomposes as a union of an
l-disjoint uniformly bounded family, and l ≥ R, we can partition Bi,i′

into an R-disjoint, uniformly bounded family, say

Bi,i′ =
∐
t∈T

A
(i)
i′,t

We now consider the family (A
(i)
i′,t)i′=1,...,s, t∈T . This family is a finite

union of uniformly bounded families, whence it is uniformly bounded.
Let us check that it is R-disjoint. Since for fixed i′ we already have R-

disjointness of (A
(i)
i′,t)t∈T , we need to show that for i′1 6= i′2 and t1, t2 ∈ T ,

the minimal distance between A
(i)
i1,t1

and A
(i)

i′2,t2
is at least R. In other

words, we need to show that the minimal distance between Bi,i′1
and

Bi,i′2
is at least R.

We have that ei,i′1 and ei,i′2 are orthogonal, so if x ∈ Bi,i′1
then since

ei,i′1(x) 6= 0, it must be the case that ei,i′2(x) = 0. Consider now y ∈
Bi,i′2

, so that ei,i′2(y) > mη. Since ei,i′2 is (mη/R)-Lipschitz, it follows
that d(x, y) ≥ R, as required.

Finally let us show that

(A
(i)
i′,t)i=0,...,d, i′=1,...,s, t∈T

is a cover of X, i.e., that X =
⋃
i,i′ Bi,i′ . For x ∈ X, from the second

part of (6.3), we have

1/2 <
d∑
i=0

s∑
i′=1

e(i,i′)(x).

At most d+1 terms in this sum are nonzero, due to the pairwise orthog-
onality withing each family (e(i,i′))

s
i′=1. Therefore, there exists some i, i′

such that e(i,i′)(x) > 1
2(d+1)

= mη. Thus, x ∈ Bi,i′ (by definition) as

required. �

We have the following consequence.
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Corollary 6.10. Suppose X is a metric space, and for all m ∈ N, X
contains a subspace Ym such that asdim(Ym) ∈ [m,∞). Then

dimnuc VL(X) = dimnuc VL∞(X) =∞.

Proof. It is not too hard to see that restriction to Ym produces a surjec-
tive ∗-homomorphism VL∞(X) → VL∞(Ym) (for surjectivity, the key
point is that an L-Lipschitz function on a closed subset of Ym extends
to an L-Lipschitz function on X). Hence we have

dimnuc VL(X) ≥ dimnuc VL∞(Ym) ≥ m,

using [28, Proposition 2.3(iv)] for the first inequality and Theorem 6.9
for the second. �

In [2, Theorem 7.2], it was shown that the asymptotic dimension of
X is equal to the covering dimension of the Higson corona νX, likewise
provided that asdim(X) <∞.

Question 6.11. Is dimnucVL(X) = asdim(X) always? Is dimnucVL(X) =
dim(νX) always?
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