

Central sequences, dimension, and \mathcal{Z} -stability of C^* -algebras

Aaron Tikuisis

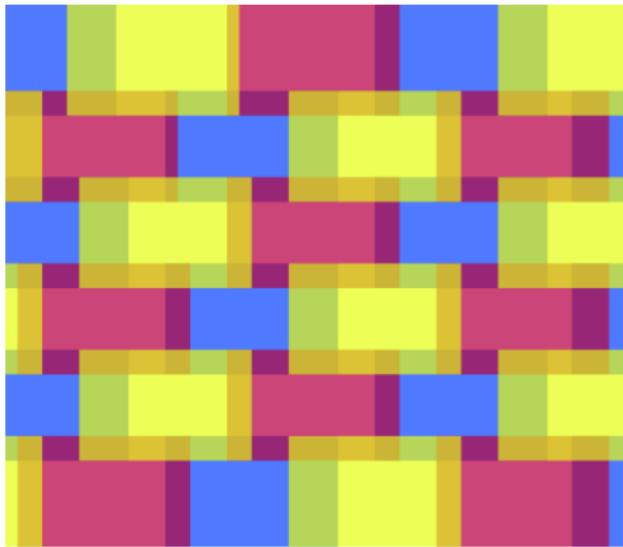
a.tikuisis@abdn.ac.uk

University of Aberdeen

C^* -Algebren

Dimension

Nuclear dimension generalizes covering dimension to C^* -algebras



Comes naturally by treating approximations in the completely positive approximation property as **non-commutative partitions of unity**.

Dimension

Nuclear dimension $\leq n$:

$$\begin{array}{ccc} A & \xrightarrow{=} & A \\ & \searrow \text{c.p.c.} & \swarrow \sum_{i=0}^n \text{c.p.c., order 0} \\ & \bigoplus_{i=0}^n F^{(i)} & \end{array}$$

Commuting pointwise- $\|\cdot\|$ approximately; $F^{(i)}$ is f.d.

Order 0 means orthogonality preserving,
 $ab = 0 \Rightarrow \phi(a)\phi(b) = 0$.

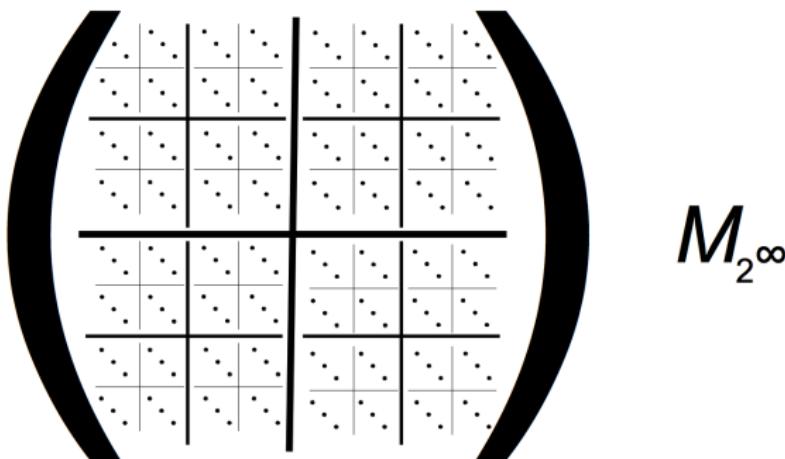
The Jiang-Su algebra

The Jiang-Su algebra \mathcal{Z} is a C^* -algebra which:

- is self-absorbing ($\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$);
- has a lot of uniformity: any unital $*$ -homomorphism $\mathcal{Z} \rightarrow \mathcal{Z}$ is approximately inner;
- makes good things happen to C^* -algebras by \otimes (eg. classification);
- has the K -theory and traces of \mathbb{C} , so \mathcal{Z} -stability is not *too* restrictive.

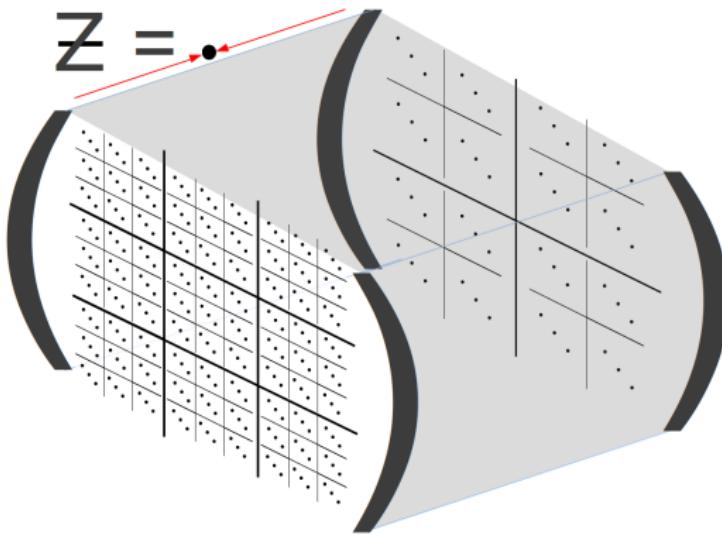
The Jiang-Su algebra

UHF algebras:



The Jiang-Su algebra

Jiang-Su algebra:



Nuclear dimension and \mathcal{Z} -stability

Shocking conjecture: finite nuclear dimension coincides with \mathcal{Z} -stability for nuclear, separable C^* -algebras with no type I subquotients.

Assuming simplicity:

- (\Rightarrow) was shown by Winter '10 (and T '12, nonunital case).
- (\Leftarrow) was shown by Matui-Sato '13, assuming at most one trace (and quasidiagonal if finite).
- (\Leftarrow) also occurs by classification, eg. assuming rationally tracial rank one (Lin '08).

Without simplicity, (\Leftarrow) holds for AH algebras (T-Winter '12).

The central sequence algebra

Let A be unital (from now on).

The sequence algebra: $A_\infty := \prod_{n=1}^\infty A / \bigoplus_{n=1}^\infty A$.

A sits inside A_∞ as constant sequences.

The central sequence algebra: $A_\infty \cap A'$.

A McDuff-type theorem for \mathcal{Z} -stability

$$A_\infty := \ell_\infty(\mathbb{N}, A)/c_0(\mathbb{N}, A).$$

Theorem (Kirchberg, Rørdam '90's)

A separable C^* -algebra A is \mathcal{Z} -stable if and only if there is a unital $*$ -homomorphism $\mathcal{Z} \rightarrow A_\infty \cap A'$.

(McDuff's Theorem '69: M is \mathcal{R} -stable iff there is a unital $*$ -homomorphism $\mathcal{R} \rightarrow M_\infty \cap M'$.)

(In nonunital case, use $(A_\infty \cap A')/\{x \in A_\infty \mid xA = Ax = 0\}$ instead of $A_\infty \cap A'$.)

Recall: $[a] \leq [b]$ if $\exists (d_n)$ such that $d_n^* b d_n \rightarrow a$;
 $\mathcal{Cu}(A) = \{[a] : a \in (A \otimes \mathcal{K})_+\}$.

Proposition (Rørdam-Winter '08)

There is a unital *-homomorphism $\mathcal{Z} \rightarrow A_\infty \cap A'$ (ie. A is \mathcal{Z} -stable) if and only if the $\mathcal{Cu}(A_\infty \cap A')$ is nice in the following sense:

- (i) $\mathcal{Cu}(A_\infty \cap A')$ is almost unperforated (order determined by traces); and
- (ii) $\mathcal{Cu}(A_\infty \cap A')$ is almost divisible.

In fact (i) can be weakened to M -comparison and (ii) to $\mathcal{Cu}(A_\infty \cap A')$ being N -almost divisible.

Nuclear dimension and the Cuntz semigroup

Proposition

There is a unital *-homomorphism $\mathcal{Z} \rightarrow A_\infty \cap A'$ if and only if $\mathcal{Cu}(A_\infty \cap A')$ has M -comparison and $\mathcal{Cu}(A_\infty \cap A')$ is N -almost divisible for some $M, N \in \mathbb{N}$.

Theorem (Robert '10)

If $\dim_{nuc} A \leq n$ then $\mathcal{Cu}(A)$ has n -comparison.

Proposition

If $\dim_{nuc} A \leq n$ then $\mathcal{Cu}(A)$ is n -almost divisible.

At a minimum, we need to assume no type I subquotients.

It entails the “global Glimm property” (and particular, orthogonal full elements).

Nuclear dimension and central sequences

Theorem (Robert-T, '13)

Let A have finite nuclear dimension. Then

$$\begin{array}{ccc} A_\infty \cap A' & \xrightarrow{\subset} & (A_\infty)_\infty \cap A' \\ & \searrow \text{c.p.c., order 0} & \nearrow \sum_{i=0}^N \text{c.p.c., order 0} \\ & \mathbf{C}^{(0)} \oplus \dots \oplus \mathbf{C}^{(N)} & \end{array}$$

commuting exactly, where $\mathbf{C}^{(i)}$ is a hereditary subalgebra of $(A_\infty)_\infty$.

Here, $N = 2\dim_{nuc} A + 1$.

Since $\mathcal{Cu}(A)$ has n -comparison, so does $\mathbf{C}^{(i)}$.

Corollary

$\mathcal{Cu}(A_\infty \cap A')$ has $((N + 1)(n + 1) - 1)$ -comparison.

Nuclear dimension and central sequences

Theorem (Robert-T, '13)

Let A have finite nuclear dimension. Then

$$\begin{array}{ccc} A_\infty \cap A' & \xrightarrow{\subset} & (A_\infty)_\infty \cap A' \\ & \searrow \text{c.p.c., order 0} & \nearrow \sum_{i=0}^N \text{c.p.c., order 0} \\ & \mathbf{C}^{(0)} \oplus \dots \oplus \mathbf{C}^{(N)} & \end{array}$$

commuting exactly.

Theorem (Robert-T, '13)

If A is separable and $\dim_{nuc} A < \infty$, then A is \mathcal{Z} -stable if and only if $A_\infty \cap A'$ has two orthogonal full elements.

Theorem (Robert-T, '13)

If A has finite nuclear dimension, no type I subquotients, no purely infinite subquotients, and $\text{Prim}(A)$ has a basis of compact open sets, then A is \mathcal{Z} -stable.

Eg. if A has finite decomposition rank and real rank zero.

Eg. if $A = C(X) \rtimes \mathbb{Z}^n$, where X is the Cantor set and the action is free; $\dim_{nuc} A < \infty$ thanks to Szabó.

New results

Theorem (Robert-T, '13)

If A has finite nuclear dimension, no type I subquotients, no purely infinite quotients, and $\text{Prim}(A)$ is Hausdorff, then A is \mathcal{Z} -stable.

Note: $\text{Prim}(A)$ may be infinite-dimensional (eg. $\dim_{nuc} C(X, \mathcal{Z}) \leq 2$, where X is the Hilbert cube).

Corollary (Robert-T '13, T-Winter '12)

If A is a $C_0(X)$ -algebra, all of whose fibres are simple, then A has finite decomposition rank if and only if A is \mathcal{Z} -stable and the fibres have bounded decomposition rank.

Outlook

Question

If A has no type I subquotients, does it have two orthogonal almost full elements?

Does it help to assume $\dim_{nuc} A < \infty$?

Questions about nice C^* -algebras (\mathcal{Z} -stable or $\dim_{nuc} < \infty$):

Question

If $a \in A_\infty \cap A'$ is full in A_∞ , is it full in $A_\infty \cap A'$? Even for A strongly purely infinite?

Question

What does $\mathcal{Cu}(A_\infty \cap A')$ look like? Even for $A = \mathcal{Z}$?