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1. Preliminaries on Dixmier sets

Let A be a C∗-algebra. We denote by Asa the set of self-adjoint elements of A and
by A+ the set of positive elements of A. Let A∗ denote the dual of A. We denote by
A∗sa the set of self-adjoint functionals in A∗ and by A∗+ the set of positive functionals in
A∗.

1.1. Dixmier sets on A and A∗. We call a set C ⊆ A a Dixmier set if it is convex,
norm-closed, and invariant under unitary conjugation. The latter means that uCu∗ ⊆ C
for all unitaries u ∈ A∼ (where A∼ is the minimal unitization of A, i.e. A itself if A is
unital, and the unitization A+C1 if A is non-unital). We will largely work with singly
generated Dixmier sets. Given a ∈ A we denote by DA(a) the smallest Dixmier set
containing a.

We let A, and more generally M(A) (the multiplier algebra of A), act on A∗ in the
usual way: if a ∈M(A) and φ ∈ A∗ then

aφ(x) := φ(ax), (φa)(x) := φ(xa) (x ∈ A).
A set C ⊆ A∗ is called a Dixmier set if it is convex, weak*-closed, and invariant under
unitary conjugation. The latter condition means that uCu∗ ⊆ C for all unitaries u
in A∼. Given φ ∈ A∗ we denote by DA(φ) the Dixmier set generated by φ, i.e., the
smallest Dixmier set containing φ. Since DA(φ) is weak*-closed and bounded, it is
weak*-compact.

We shall make frequent use of the fact that A is the dual of A∗ when the latter
is endowed with the weak* topology [REF]. This, combined with the Hahn-Banach
theorem, implies that elements of A separate disjoint weak*-compact convex sets in A∗.

Let V be a subgroup of the unitary group U(M(A)) of M(A). On some occasions
we will need more general versions of the sets defined above where the unitaries range
through V rather than all of U(A∼). Thus, given a ∈ A we define DA(a,V) as the
smallest norm-closed convex subset of A containing a and invariant under conjugation
by unitaries in V . Similarly, given φ ∈ A∗ we define DA(φ,V) as the the smallest weak*-
closed convex subset of A∗ containing φ and invariant under conjugation by unitaries
in V .

1.2. Mixing operators. Let V be a subgroup of the unitary group U(M(A)) ofM(A).
We call a linear operator T : A→ A a V-mixing operator if it is defined by an equation
of the form

Ta =
n∑
j=1

λjujau
∗
j (a ∈ A),
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where n ∈ N, λj > 0, uj ∈ V (1 6 j 6 n), and ∑n
j=1 λj = 1. Elementary properties of

such operators are described in [2, 2.2]. We denote by Mix(A,V) the set of V-mixing
operators on A. If V = U(A∼) we simply write Mix(A). Notice that

DA(a,V) = {Ta : T ∈ Mix(A,V)}‖·‖.
We also call an operator T : A∗ → A∗ a V-mixing operator if it is the adjoint of a

V-mixing operator on A. In this case T has the form

Tφ =
n∑
j=1

λjujφu
∗
j (φ ∈ A∗),

where n ∈ N, λj > 0, uj ∈ V (1 6 j 6 n), and ∑n
j=1 λj = 1. Observe that T is positive

(Tφ > 0 for all φ > 0) and contractive. We denote the set of V-mixing operators on A∗
by Mix(A∗,V) or simply by Mix(A∗) if V = U(A∼). Notice that

DA(φ,V) = weak*-cl{Tφ : T ∈ Mix(A∗,V)}.
Lemma 1.1. Let a ∈ A and φ ∈ A∗. Then
(1.1) DA(φ,V)(a) = φ(DA(a,V)).
Proof. Since DA(φ,V) is weak∗-compact, DA(φ,V)(a) is a closed subset of C. To prove
the lemma it suffices to show that φ(DA(a,V)) is a dense subset of DA(φ,V)(a). Let
T ∈ Mix(A,V). Then (T ∗φ)(a) = φ(Ta). Letting T range through all Mix(A,V) the
left side is dense in DA(φ,V)(a) while the right side is dense in φ(DA(a,V)). �

We will find it convenient to work with more general unitary mixing operators on
A∗. We let Mix(A∗,V) denote the closure of Mix(A∗,V) in the point-weak∗ topology on
B(A∗) (the bounded linear operators on A∗). If V = U(A∼) we simply write Mix(A∗).
Since a limit in the point-weak∗ topology of positive contractions is again a positive
contraction, all T ∈ Mix(A∗,V) are positive contractions. Since the unit ball of B(A∗)
is compact in the point-weak∗ topology, Mix(A∗,V) is a compact set in this topology.
Lemma 1.2. Let φ ∈ A∗. Then DA(φ,V) = {Tφ : T ∈ Mix(A∗,V)}.
Proof. Clearly, Tφ ∈ DA(φ,V) for all T ∈ Mix(A∗,V). Suppose that ψ ∈ DA(φ,V).
Then Tiφ → ψ in the weak* topology for some net of V-mixing operators (Ti)i on A∗.
Passing to a subnet of (Ti)i convergent in the point-weak* topology we get that ψ = Tφ
for some T ∈ Mix(A∗,V). �

2. Maximally mixed functionals

Let φ ∈ A∗. If ψ ∈ DA(φ) we say that ψ is more unitarily mixed than φ. We say
that φ is maximally (unitarily) mixed if DA(φ) is minimal with respect to the order by
inclusion in the lattice of weak∗-compact Dixmier subsets of A∗. Thus φ is maximally
mixed if and only if for all ψ ∈ DA(φ) we have DA(ψ) = DA(φ).

It follows from Zorn’s lemma that any weak*-compact Dixmier set contains a max-
imally mixed functional. In particular, DA(φ) contains a maximally mixed functional
for all φ ∈ A∗. Note also that (i) the zero functional is maximally mixed, (ii) if φ is
tracial then DA(φ) = {φ} and hence φ is maximally mixed, and (iii) if φ is maximally
mixed and λ ∈ C then λφ is maximally mixed.
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Theorem 2.1. Let φ ∈ A∗ be maximally mixed. Then the self-adjoint and skew-adjoint
parts of φ are maximally mixed. If φ is self-adjoint, then its positive and negative parts
are maximally mixed.

Proof. Let φsa denote the self-adjoint part of φ. Let ψ ∈ DA(φsa). Then ψ = Tφsa
for some T ∈ Mix(A∗) (Lemma 1.2). Mixing operators in Mix(A∗) preserve the self-
adjoint part. So ψ is the self-adjoint part of Tφ. Since φ is maximally mixed and
Tφ ∈ DA(φ), there exists S ∈ Mix(A∗) such that STφ = φ. Taking self-adjoint parts
we get Sψ = φsa. Thus, φsa ∈ DA(ψ), as desired. The same argument applies to the
skew-adjoint part.

Suppose now that φ is self-adjoint (and maximally mixed). Let us show first that
(Tφ)+ = Tφ+ and (Tφ)− = Tφ− for any T ∈ Mix(A∗). Observe that ‖ψ‖ 6 ‖φ‖ for
all ψ ∈ DA(φ). But, since φ is maximally mixed, we must have that ‖ψ‖ = ‖φ‖ for all
ψ ∈ DA(φ). That is, all the functionals in DA(φ) have the same norm. Applying T on
both sides of φ = φ+ − φ− we get Tφ = Tφ+ − Tφ−. Then,

‖Tφ+‖+ ‖Tφ−‖ 6 ‖φ+‖+ ‖φ−‖ = ‖φ‖ = ‖Tφ‖.
It follows that Tφ+ and Tφ− are orthogonal ([6, Lemma 3.2.3]). By the uniqueness of
the Jordan decomposition ([6, Theorem 3.2.5]), (Tφ)+ = Tφ+ and (Tφ)− = Tφ−.

That φ+ and φ− are maximally mixed is now straightforward. For suppose that
ψ ∈ DA(φ+). By Lemma 1.2, there exists T ∈ Mix(A∗) such that ψ = Tφ+. Further,
since φ is maximally mixed, there exists S ∈ Mix(A∗) such that STφ = φ. Then
Sψ = STφ+ = (STφ)+ = φ+. Thus, φ+ is maximally mixed. The same argument
shows that φ− is maximally mixed. �

Due in part to the previous theorem, in the sequel our focus will be on the positive
maximally mixed functionals. We warn however that it is not true that a self-adjoint
functional whose positive and negative parts are maximally mixed is itself maximally
mixed: see Example 3.10.

Theorem 2.2. The set of maximally mixed functionals is a norm-closed subset of A∗.

Proof. Let φ ∈ A∗ be in the norm-closure of the set of maximally mixed functionals.
Let ψ ∈ DA(φ). By Lemma 1.2, there exists T ∈ Mix(A∗) such that ψ = Tφ. Let
ε > 0. Then there exists a maximally mixed φ̃ such that ‖φ − φ̃‖ < ε. Since T is a
contraction,

‖ψ − T φ̃‖ = ‖Tφ− T φ̃‖ 6 ‖φ− φ̃‖ < ε.

Since φ̃ is maximally mixed, there exists S ∈ Mix(A∗) such that ST φ̃ = φ̃. Then,

‖Sψ − φ̃‖ = ‖Sψ − ST φ̃‖ 6 ‖ψ − T φ̃‖ < ε.

So ‖φ − Sψ‖ < 2ε. Since DA(ψ) is norm-closed, we have φ ∈ DA(ψ) and hence
DA(ψ) = DA(φ). Thus, φ is maximally mixed. �

We will show in Examples 2.16 and 2.17 that the set of maximally mixed functionals
is not always weak*-closed. We do have the following:

Proposition 2.3. Let A be a unital C∗-algebra and let φ ∈ A∗+.
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(i) Suppose that for every a ∈ Asa and ε > 0 there exists a maximally mixed φ′ ∈ A∗+
such that φ′ 6 φ and |φ(a)− φ′(a)| < ε.Then φ is maximally mixed.

(ii) Suppose that for every a ∈ Asa and ε > 0 there exists a maximally mixed φ′ ∈ A∗+
such that φ′ > φ and |φ(a)− φ′(a)| < ε.Then φ is maximally mixed.

(iii) Suppose that (φi)i is a norm-bounded net of maximally mixed functionals in A∗+
which is either upward directed or downward directed relative to the order in A∗+.
Then the net is convergent and the limit is maximally mixed.

Proof. (i) Let ψ ∈ DA(φ) and suppose that ψ = Tφ, where T ∈ Mix(A∗). Suppose,
towards a contradiction, that φ /∈ DA(ψ). Then by the Hahn-Banach theorem there
exist a ∈ Asa, t ∈ R and ε > 0 such that ρ(a) 6 t for all ρ ∈ DA(ψ) but φ(a) > t + ε.
Replacing a by a+ ‖a‖1 and t by t+ ‖a‖‖φ‖, we may assume that a > 0.

By hypothesis, there exists a maximally mixed functional φ′ ∈ A∗+ such that φ′ 6 φ
and φ′(a) > t + ε/2. Let ψ′ = Tφ′. Note that, since T is positive, ψ′ 6 ψ. Since φ′ is
maximally mixed, φ′ ∈ DA(ψ′). Thus, there exists S ∈ Mix(A∗) such that Sψ′ = φ′.
Let ρ = Sψ. Then φ′ 6 ρ and so φ′(a) 6 ρ(a) 6 t since a > 0. This contradicts the
fact that φ′(a) > t+ ε/2. Thus φ ∈ DA(ψ) and hence DA(ψ) = DA(φ).

(ii) This is similar to (i).
(iii) The convergence of the net follows from weak∗-compactness, monotonicity and

the fact that A is the linear span of A+. The limit is maximally mixed by (i) and
(ii). �

Next we prepare to examine the relation of the maximally mixed functionals of A
with those of its ideals and quotients. Theorem 2.6 will tell us that, given an ideal J of
A, maximal mixedness of a functional can be read off by its decomposition with respect
to A/J and J . Part (i) of the following proposition is a classical key result used to
prove permanence of the Dixmier property under suitable extensions; we use part (ii)
in an analogous way to handle Dixmier sets of functionals.

Proposition 2.4. Let a ∈ A and φ ∈ A∗. The following are true:
(i) DA(a) is equal to the norm-closure of co{eihae−ih : h ∈ Asa}.
(ii) DA(φ) is equal to the weak*-closure of co{eihφe−ih : h ∈ Asa}.

Proof. (i) [FLAG1] For unital A, the result is given in [2, Proposition 2.4]. For non-
unital A, we apply this result to A∼ and use the fact that if h ∈ Asa and t ∈ R then
ei(h+t1) = eit1eih.

(ii) This follows from (i) and the Hahn-Banach theorem. Indeed, if (ii) fails to hold
then there is a unitary conjugate of φ which does not belong to the weak*-closure of
co{eihφe−ih : h ∈ Asa}. Since A∗ with the weak∗-topology has dual space A, it follows
by the Hahn-Banach separation theorem that there exists u ∈ U(A), a ∈ A and t ∈ R
such that Re(φ(uau∗)) > t and Re(φ(eihae−ih)) 6 t for all h ∈ Asa. It follows from the
last inequality and part (i) that Re(φ(x)) 6 t for all x ∈ DA(a). This contradicts the
fact that Re(φ(uau∗)) > t. �

Proposition 2.5. Let J be a proper, closed two-sided ideal of a unital C∗-algebra A.
Let ιJ : J → A and qJ : A→ A/J denote the inclusion and quotient maps.
(i) The adjoint map ι∗J : A∗ → J∗ maps DA(φ) onto DJ(φ|J) for all φ ∈ A∗+.



MAXIMALLY UNITARILY MIXED STATES ON A C*-ALGEBRA 5

(ii) We have DA(φ) = DA(φ,U(J + C1)) for all φ ∈ A∗+ such that ‖φ‖ = ‖φ|J‖.
(iii) The adjoint map q∗J : (A/J)∗ → A∗ maps DA/J(φ) bijectively to DA(φ ◦ qJ) for all

φ ∈ (A/J)∗+.

Proof. If the ideal J is a unital C*-algebra then A ∼= J ⊕ A/J and all three results
(i)-(iii) have a straightforward proof. We thus assume that J is non-unital. Note then
that J + C1 may be regarded as the unitization of J .

(i) Let us first show that ρ
ι∗J7−→ ρ|J maps DA(φ) into DJ(φ|J). Let ψ ∈ DA(φ) and

suppose that ψ|J /∈ DJ(φ|J). Then, by the Hahn-Banach theorem, there exist a ∈ Jsa
and t ∈ R such that ψ(a) > t and ρ(a) 6 t for all ρ ∈ DJ(φ|J). It follows from Lemma
1.1 applied to φ|J and a that φ(b) 6 t for all b ∈ DJ(a). But, by [2, Remark 2.6],
DJ(a) = DA(a) (since a ∈ J). Hence φ(b) 6 t for all b ∈ DA(a). Lemma 1.1, applied
now to φ and a, implies that ρ(a) 6 t for all ρ ∈ DA(φ). Since ψ ∈ DA(φ), we obtain
that ψ(a) 6 t which gives a contradiction. Thus ι∗J maps DA(φ) into DJ(φ|J).

Let us prove surjectivity. Since ι∗J is weak∗-continuous, the image of DA(φ) is a
weak∗-compact convex subset of DJ(φ|J). For every T ∈ Mix(A,U(J + C1)) we have
(φ ◦ T )|J = φ|J ◦ T |J . Clearly, every mixing operator in Mix(J) has the form T |J for
some T ∈ Mix(A,U(J + C1)). Thus, letting T range through Mix(A,U(J + C1)) the
functionals φ|J ◦ T |J range through a dense subset of DJ(φ|J). This shows that the
image of DA(φ) by ι∗J is also dense in DJ(φ|J).

(ii) Clearly DA(φ,U(J + C1)) ⊆ DA(φ). To prove the opposite inclusion it suffices
to show that uφu∗ ∈ DA(φ,U(J + C1)) for all u ∈ U(A). Let u ∈ U(A) and set
ψ = uφu∗. By (i), ψ|J ∈ DJ(φ|J), so there exists a net of mixing operators (Ti)i in
Mix(A,U(J + C1)) such that

(φ ◦ Ti)|J = (φ|J) ◦ (Ti|J) weak∗
−→ ψ|J .

Passing to a subnet if necessary, we may assume that φ ◦ Ti → ψ′ ∈ DA(φ,U(J +C1)).
Then ψ′|J = ψ|J . Moreover [FLAG4], ‖ψ′‖ 6 ‖φ‖ = ‖φ|J‖ = ‖ψ|J‖. By the uniqueness
of the norm-preserving extension of a positive functional, we get that ψ′ = ψ. Thus,
ψ ∈ DA(φ,U(J + C1)).

(iii) The image of DA/J(φ) by q∗J is the set {ρ◦ qJ : ρ ∈ DA/J(φ)}. This set is convex,
weak*-compact, and contains φ ◦ qJ . Moreover, for u ∈ U(A) and ρ ∈ DA/J(φ) we have
u(ρ ◦ qJ)u∗ = (vρv∗) ◦ qJ , where v = qJ(u) ∈ U(A/J). Hence {ρ ◦ qJ : ρ ∈ DA/J(φ)} is
invariant under unitary conjugations. It follows that

DA(φ ◦ qJ) ⊆ {ρ ◦ qJ : ρ ∈ DA/J(φ)}.
To prove the reverse inclusion it suffices to show that the left side is dense in the right
side (since the left side is weak*-compact). By Proposition 2.4 (ii) (applied in A/J),
it suffices to show that eikφe−ik ◦ qJ belongs to DA(φ ◦ qJ) for all k ∈ (A/J)sa. But if
k ∈ (A/J)sa then we may find h ∈ Asa such that qJ(h) = k, from which it follows that

(eikφe−ik) ◦ qJ = eih(φ ◦ qJ)e−ih ∈ DA(φ ◦ qJ),
as desired.

We have shown that q∗J maps DA/J(φ) onto DA(φ ◦ qJ). Since q∗J is also injective, the
result follows. �
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Let J ⊆ A be as above a proper closed two-sided ideal of A. Let (A∗+)J denote the
set of functionals φ ∈ A∗ such that ‖φ‖ = ‖φ|J‖. Let (A∗+)J denote the functionals
φ ∈ A∗ such that φ(J) = {0}. Recall then that every φ ∈ A∗+ can be expressed in the
form φ = φ1 + φ2, with φ1 ∈ (A∗+)J and φ2 ∈ (A∗+)J and that this decomposition is
unique (see, for example, [4, 2.11.7]).

Theorem 2.6. Let A be a unital C*-algebra and let J be a proper closed ideal of A.
Let φ ∈ A∗+ and write φ = φ1 + φ2, where φ1, φ2 ∈ A∗+ are such that φ1 ∈ (A∗+)J and
φ2 ∈ (A∗+)J .
(i) φ1 is maximally mixed if and only if φ1|J ∈ J∗+ is maximally mixed.
(ii) φ2 is maximally mixed if and only if the functional that it induces on A/J is

maximally mixed.
(iii) φ is maximally mixed if and only if both φ1 and φ2 are maximally mixed. Moreover,

in this case DA(φ) = DA(φ1) +DA(φ2).

Proof. (i) Suppose first that φ1 is maximally mixed. Let ψ′ ∈ DJ(φ1|J). By Proposition
2.5 (i), there exists ψ ∈ DA(φ1) such that ψ|J = ψ′. Since φ1 is maximally mixed,
φ1 ∈ DA(ψ). Then, again by Proposition 2.5 (i), φ1|J ∈ DJ(ψ′). Thus, φ1|J is maximally
mixed.

Let us prove the converse. Let ψ ∈ DA(φ1). Then ψ|J ∈ DJ(φ1|J) by Proposition 2.5
(i). Since φ1|J is maximally mixed, φ1|J ∈ DJ(ψ|J). By Proposition 2.5 (i), there exists
φ′1 ∈ DA(ψ) such that φ′1|J = φ1|J . Moreover, ‖φ′1‖ 6 ‖ψ‖ 6 ‖φ1‖. By the uniqueness
of the norm-preserving extension of a positive functional, φ′1 = φ1. So φ1 ∈ DA(ψ), as
desired.

(ii) This is a rather straightforward consequence of Proposition 2.5 (iii). Let φ̃ ∈
(A/J)∗ be such that φ = φ̃ ◦ qJ . Suppose that φ̃ is maximally mixed. By Proposition
2.5 (iii), if ψ ∈ DA(φ) then ψ = ψ̃ ◦ qJ for some ψ̃ ∈ DA/J(φ̃). Since φ̃ is maximally
mixed, φ̃ ∈ DA/J(ψ̃). Again by Proposition 2.5 (iii), φ ∈ DA(ψ) as desired. Suppose
on the other hand that φ is maximally mixed. Let ψ̃ ∈ DA/J(φ̃). Then ψ̃ ◦ qJ ∈ DA(φ).
Hence, φ ∈ DA(ψ̃ ◦ qJ). By Proposition 2.5 (iii), φ̃ ∈ DA/J(ψ̃) as desired.

(iii) Suppose that φ is maximally mixed. Let T ∈ Mix(A∗). Let us show first that
Tφ1 ∈ (A∗+)J and Tφ2 ∈ (A∗+)J . It is clear that Tφ2 ∈ (A∗+)J , since φ2 ∈ (A∗+)J
and (A∗+)J is a Dixmier set. Thus, restricting to J in Tφ = Tφ1 + Tφ2 we obtain
that (Tφ)|J = (Tφ1)|J . Since φ is maximally mixed, φ ∈ DA(Tφ), and therefore
φ|J ∈ DJ((Tφ)|J) by Proposition 2.5 (i). Hence,

‖φ1‖ = ‖φ|J‖ 6 ‖(Tφ)|J‖ = ‖(Tφ1)|J‖.

So ‖Tφ1‖ 6 ‖φ1‖ 6 ‖(Tφ1)|J‖, which shows that Tφ1 ∈ (A∗+)J (by the definition of
(A∗+)J).

To prove that φ1 and φ2 are maximally mixed we proceed as follows: Since φ is
maximally mixed, there exists S ∈ Mix(A∗) such that STφ = φ. We thus have that
φ = STφ1 + STφ2. Using the last paragraph with ST in place of T , we have that
STφ2 ∈ (A∗+)J and STφ1 ∈ (A∗+)J . By the uniqueness of the decomposition of φ into
a functional in (A∗+)J and one in (A∗+)J we conclude that STφ1 = φ1 and STφ2 = φ2.
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Thus, for any T ∈ Mix(A∗) there exists S ∈ Mix(A∗) such that STφ1 = φ1 and
STφ2 = φ2. In view of Lemma 1.2, this shows that φ1 and φ2 are maximally mixed.

Suppose now that both φ1 and φ2 are maximally mixed. Let us show first that
DA(φ) = DA(φ1) + DA(φ2). The inclusion DA(φ) ⊆ DA(φ1) + DA(φ2) is clear, for if
T ∈ Mix(A∗) then Tφ = Tφ1 +Tφ2, which belongs to DA(φ1)+DA(φ2), and by Lemma
1.2 Tφ ranges through all of DA(φ). Let φ′1 ∈ DA(φ1) and φ′2 ∈ DA(φ2) and let us show
that φ′1+φ′2 ∈ DA(φ). Choose T ∈ Mix(A∗) such that Tφ2 = φ′2, so that Tφ = Tφ1+φ′2.
Recall that, as shown above, operators in Mix(A∗) preserve the decomposition of a
maximally mixed functional into functionals in (A∗+)J and (A∗+)J . Hence, Tφ1 ∈ (A∗+)J .
Since φ′1 ∈ DA(Tφ1), there exists S ∈ Mix(A∗) such that STφ1 = φ′1. Moreover,
by Proposition 2.5 (ii), we can choose S ∈ Mix(A∗,U(J + C1)). Observe then that
Sφ′2 = φ′2 (since φ′2 vanishes on J). Hence, STφ = φ′1 + φ′2, as desired.

Continue to assume that φ1 and φ2 are maximally mixed and let us show that φ
is maximally mixed. Let φ′ ∈ DA(φ). Then φ′ = φ′1 + φ′2, where φ′1 ∈ DA(φ1) and
φ′2 ∈ DA(φ2). So

DA(φ) = DA(φ1) +DA(φ2) = DA(φ′1) +DA(φ′2) = DA(φ′),
where we use the fact that φ′1 and φ′2 are maximally mixed, and the result of the previous
paragraph, for the final equality. Hence, φ is maximally mixed. �

Corollary 2.7. Let A be a non-unital C*-algebra and φ ∈ A∗+. Then φ is maximally
mixed if and only if its norm preserving extension to A∼ is maximally mixed.

In view of the previous corollary in the sequel we focus our attention on unital
C*-algebras. Further, since the scalar multiplies of a maximally mixed functional are
maximally mixed, we work with states. We denote by S(A) the state space of A and
by S∞(A) the set of maximally mixed states of A.

Let A be a unital C*-algebra. Consider states φ ∈ S(A) of the following two types:
(A) φ is tracial,
(B) φ factors through a simple quotient A/M without bounded traces.
We will also, where appropriate, speak of type (B) positive functionals (these are pos-
itive scalar multiples of type (B) states). Not much effort is needed to see that the
states of these types are maximally mixed (for tracial states, this is obvious, whereas
for type (B) states, it follows from a short argument in Lemma 2.8 below); this prompts
us to ponder whether all maximally mixed states can be described in terms of these
ones. We show in Theorem 2.10 that we are close to getting all maximally mixed states
by taking the convex hull of these ones – although we don’t know whether the set of
maximally mixed states is convex, see Question 2.13 below!

Lemma 2.8. If B is a simple unital C*-algebra with no bounded traces, then for ev-
ery state φ ∈ S(B), DB(φ) = S(B), and thus every state on B is maximally mixed.
Therefore every type (B) state on a unital C*-algebra is maximally mixed.

Proof. Suppose for a contradiction that there exists ψ ∈ S(B) \DB(φ). By the Hahn-
Banach theorem, there exist a ∈ Asa and t ∈ R such that DA(φ)(a) 6 t (i.e., s 6 t for all
s ∈ DA(φ)(a)) and ψ(a) > t. Translating by a scalar, we may assume that a is positive.
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We then know that φ(DA(a)) 6 t (Lemma 1.1) and ψ(a) > t. But ‖a‖ · 1 ∈ DA(a) (by
[5, Théorème 4]), and so ‖a‖ 6 t, which contradicts that ψ(a) > t.

The final statement now follows by Theorem 2.6 (ii). �

Proposition 2.9. Let A be a unital C*-algebra. Let φ ∈ A∗+ be maximally mixed
and let ψ ∈ A∗+ be either tracial or type (B). Then φ + ψ is maximally mixed and
DA(φ+ ψ) = DA(φ) +DA(ψ).

Proof. If ψ is tracial then DA(φ + ψ) = DA(φ) + ψ, from which the result follows at
once. Suppose then that ψ is type (B), i.e., it factors through a simple quotient A/M
without bounded traces. Let φ = φ1 + φ2, where φ1 ∈ (A∗+)M and φ2 ∈ (A∗+)M . Then

φ+ ψ = φ1 + (φ2 + ψ).
By Theorem 2.6 (iii), φ1 is maximally mixed. On the other hand, φ2 +ψ is type (B) (it
factors through A/M), so by Lemma 2.8, it is maximally mixed. Hence, by Theorem
2.6 (iii), φ = φ1 + (φ2 +ψ) is maximally mixed. Moreover, Theorem 2.6 (iii) also shows
that DA(φ) = DA(φ1) + DA(φ2 + ψ). But DA(φ2 + ψ) = (φ2(1) + ψ(1))S(A)M , where
S(A)M = S(A/M) ◦ qM (i.e., all states that factor through A/M). So

DA(φ) = DA(φ1) + φ2(1)S(A)M + ψ(1)S(A)M
= DA(φ1) +DA(φ2) +DA(ψ)
= DA(φ) +DA(ψ),

using Theorem 2.6 (iii) again for the last equality. �

Theorem 2.10. Let A be a unital C*-algebra, and let Λ denote the convex hull of the
set of states that are either tracial or type (B). Then Λ‖·‖ ⊆ S∞(A) ⊆ Λweak∗

.

Examples 2.16, 2.17, and 3.9 show that neither inequality in the above theorem can
be turned into an equality.
Proof. It follows by Proposition 2.9 that Λ ⊆ S∞(A), and so by Theorem 2.2

Λ‖·‖ ⊆ S∞(A).
On the other hand, to show that S∞(A) is contained in the weak*-closure of Λ, it
suffices to show that for any φ ∈ S(A) the Dixmier set DA(φ) has nonempty intersection
with Λweak∗

. Suppose, for the sake of contradiction, that this is not the case for some
φ ∈ S(A). Then, by the Hahn-Banach theorem, there exists a self-adjoint element a
and real numbers t1 < t2 such that ψ(a) 6 t1 for all ψ ∈ Λ and ψ′(a) > t2 for all
ψ′ ∈ DA(φ). Translating a by a multiple of the unit we can assume that it is positive.
Since DA(φ)(a) = φ(DA(a)) (Lemma 1.1), we have that φ(a′) > t2 for all a′ ∈ DA(a).
On the other hand, ψ(a) 6 t1 for every tracial state and every state that factors
through a simple quotient without bounded traces. By [3, Theorem 4.12], the distance
from DA(a) to 0 is at most t1. Thus, there exists a′ ∈ DA(a) such that ‖a′‖ < t2. This
contradicts that φ(a′) > t2. �

Corollary 2.11. Let A be a unital C*-algebra such that every simple quotient of A has
a bounded trace. Then all the maximally mixed states of A are tracial.
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In the case of simple C*-algebras we obtain a complete description of the maximally
mixed positive functionals:
Corollary 2.12. Let A be a simple C*-algebra.
(i) If A is unital and has at least one non-zero bounded trace then every maximally

mixed positive functional on A is tracial.
(ii) If A is unital and has no bounded traces then all the positive functionals on A are

maximally mixed.
(iii) If A is non-unital then every maximally mixed positive functional on A is tracial.
Proof. (i) follows from Corollary 2.11, while (ii) is Lemma 2.8. For (iii), note that A∼
has only one simple quotient, namely C, and it has a bounded trace. Hence by Corollary
2.11, every maximally mixed state on A∼ is tracial, and then (iii) follows from Theorem
2.6 (i). �

Question 2.13. Let A be a unital C*-algebra. Is the set S∞(A) of maximally mixed
states convex?

A closely related question is the following:
Question 2.14. Do we have DA(φ+ ψ) = DA(φ) +DA(ψ) for all φ, ψ ∈ S∞(A)?

An affirmative answer to this question also answers affirmatively Question 2.13.
Indeed, suppose that Question 2.14 has an affirmative answer and say we are given
φ, ψ ∈ S∞(A) and φ′ ∈ DA(φ) and ψ′ ∈ DA(ψ). Then

DA(φ+ ψ) = DA(φ) +DA(ψ) = DA(φ′) +DA(ψ′) = DA(φ′ + ψ′).
Recall that Proposition 2.9 answers Question 2.14 affirmatively in the case that ψ is
either tracial or type (B).

Turning to the question of whether the containment S∞(A) ⊆ Λweak∗
is strict, where

Λ is as defined in Theorem 2.10, it is evident from that theorem that (non-)strictness of
this inequality is equivalent to the natural question of whether S∞(A) is weak*-closed.
The next proposition gives an obstruction to S∞(A) being weak*-closed – in fact, it is
the only obstruction we have been able to find, see Question 2.18.
Proposition 2.15. Let A be a unital C*-algebra such that S∞(A) is a weak*-closed sub-
set of S(A). Then the set of all maximal ideals M such that A/M is either isomorphic
to C or has no bounded traces is a closed subset of Prim(A).
Proof. Let X denote the set of all all maximal ideals M such that A/M is either
isomorphic to C or has no bounded traces. Let J = ⋂

M∈XM . Let N ∈ Prim(A) be an
adherence point of X, i.e, J ⊆ N . Then every state on A that factors through A/N is
a weak* limit of convex combinations of states that factor through A/M , with M ∈ X
([4]). Notice that S∞(A/M) = S(A/M) for all M ∈ X. Thus, all the states that factor
through A/M , with M ∈ X, are maximally mixed. It follows that all states factoring
through A/N are maximally mixed, and so all states of A/N are maximally mixed by
Theorem 2.6 (ii).

Since N is primitive, let φ ∈ S(A/N) be a pure state whose GNS representation is
faithful. Then any pure state ψ on A/N is a weak* limit of vector states (with respect
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to the GNS representation) by [4, Corollary 3.4.3]. By the unitary version of Kadison’s
Transitivity Theorem ([4, Theorem 2.8.3 (iii)]), each of these vector states is in fact
unitarily equivalent to φ, and thus ψ is a weak* limit of unitary conjugates of φ. By
approximating arbitrary states on A/N by convex combinations of pure states, we find
that S(A/N) = DA/N(φ). Since all states on A/N are maximally mixed, it follows that
S(A/N) = DA/N(ψ) for all ψ ∈ S(A/N).

This implies that A/N is simple, for otherwise the states factoring through a non-
trivial quotient would form a proper Dixmier set. From Corollary 2.12 we see that A/N
must be either isomorphic to C or without bounded traces. Thus, N ∈ X. �

The examples below show that S∞(A) may fail to be weak*-closed.

Example 2.16. Fix a simple unital C*-algebra B without bounded traces (e.g., the
Cuntz algebra O2). Let A be the C*-subalgebra of C([0, 1],M2(B)) of functions f such
that f(1) ∈ M2(C) ⊆ M2(B). For each t ∈ [0, 1] let Mt = {f ∈ A : f(t) = 0}.
Then A/Mt

∼= M2(B) for all 0 6 t < 1. So Mt is a maximal ideal such that A/Mt is
simple without bounded traces. The maximal ideal M1 is an adherence point of the set
{Mt : 0 6 t < 1}. However, A/M1 ∼= M2(C) has a bounded trace and is not isomorphic
to C. Thus, S∞(A) is not weak*-closed, by Proposition 2.15.

Example 2.17. Again fix a simple unital C*-algebra B without bounded traces. Let A
be the C*-subalgebra of C({1, 2, . . . ,∞}, (B⊗K)∼) of f such that f(n) ∈Mn(B) +C1
for all n ∈ N, where we regard Mn(B) embedded in B ⊗ K as the top right corner.
For each n ∈ N define In = {f ∈ A : enf(n) = 0}, where en is the unit of Mn(B).
Then In is a maximal ideal for all n = 1, 2, . . . and A/In ∼= Mn(B) has no bounded
traces. Since ⋂n In = {0}, the set {In : n ∈ N} is dense in Prim(A). Consider the ideal
I∞ = {f : f(∞) = 0}. Since A/I∞ = (B ⊗K)∼ is a prime C*-algebra, I∞ ∈ Prim(A).
But I∞ is not maximal. By Proposition 2.15, S∞(A) is not weak*-closed.

If one wanted an algebra A with no bounded traces in which S∞(A) is not weak*-
closed, one can simply tensor the example just given with a nuclear, unital, simple,
traceless C*-algebra (this operation does not change the ideal lattice, so the same
obstruction applies).

Question 2.18. Is the converse of Proposition 2.15 true? That is, let A be separable and
unital. Suppose that the set of maximal ideals M such that A/M is either isomorphic
to C or has no bounded traces is a closed subset of Prim(A). Is S∞(A) weak*-closed?

In the next section we answer affirmatively Questions 2.13, 2.14, and 2.18 for C*-
algebras with the Dixmier property.

3. C*-algebras with the Dixmier property

Let A be a unital C*-algebra. Let Z(A) denote its center. Recall that A is said to
have the Dixmier property if DA(a) ∩ Z(A) is non-empty for all a ∈ A. Henceforth in
this section we assume that A is a unital C*-algebra with the Dixmier property.

To analyze the maximally mixed states for such A, we will make frequent use of a
description of DA(a)∩Z(A) (for a self-adjoint) found in [3] (between Theorem 2.6 and
Corollary 2.7, with details in the proof of Theorem 2.6). Let Ẑ denote the spectrum of
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Z(A), which, by weak centrality of A, we identify with the set of maximal ideals of A.
For a ∈ A self-adjoint, define fa, ga : Ẑ → R by

fa(M) :=

min sp(qM(a)), if A/M has no bounded traces;
τM(a), otherwise,

where τM is the (necessarily unique) tracial state on A which factors through A/M .
Likewise,

(3.1) ga(M) :=

max sp(qM(a)), if A/M has no bounded traces;
τM(a), otherwise.

Then fa is upper semicontinuous, ga is lower semicontinuous, fa 6 ga, and, identifying
Z(A) = C(Ẑ) now,

DA(a) ∩ Z(A) = {z ∈ C(Ẑ) : z = z∗ and fa 6 z 6 ga}.

Let us say that two maximally mixed bounded functionals φ and ψ are equivalent if
they generate the same Dixmier set, i.e., DA(φ) = DA(ψ).

Proposition 3.1. The equivalence classes of maximally mixed, bounded functionals on
A are in bijective correspondence with the bounded functionals on the center of A. The
correspondence is given by the restriction map φ 7→ φ|Z(A), for φ maximally mixed.

Proof. Taking self-adjoint and skew-adjoint parts, we may reduce to the case of self-
adjoint functionals. Any two equivalent self-adjoint functionals agree on the center,
so the mapping is well defined on equivalence classes. To see that it is onto, fix a
self-adjoint functional µ on the center. Then the set of all φ ∈ A∗sa whose restriction
to Z(A) is µ is a weak*-compact Dixmier set. It thus must contain maximally mixed
functionals.

Let us now show that the mapping is injective. Let φ, ψA∗sa be two maximally mixed
self-adjoint functionals that agree on the center. Suppose for a contradiction that
DA(φ) 6= DA(ψ). Then DA(φ) and DA(ψ) are disjoint. By the Hahn-Banach theorem,
we can find a ∈ Asa and real numbers t1 < t2 such that φ′(a) 6 t1 for all φ′ ∈ DA(φ) and
ψ′(a) > t2 for all ψ′ ∈ DA(ψ). By Lemma, φ(a′) 6 t1 and ψ(a′) > t2 for all a′ ∈ DA(a).
This holds in particular for a′ ∈ DA(a)∩Z(A). This contradicts that φ and ψ agree on
Z(A). �

Remark 3.2. The previous proposition implies that if A has the Dixmier property then
DA(φ), for φ ∈ S(A), contains a unique equivalence class of maximally mixed states;
namely, the maximally mixed states that agree with φ on Z(A). This is in general not
true for C*-algebras without the Dixmier property. Take for example A to be a simple
unital C*-algebra with at least two tracial states and let φ be a pure state on A. Then
DA(φ) is the set of all states, so it contains both tracial states (which are inequivalent
maximally mixed states).

We need the following little lemma in the proceeding theorem.
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Lemma 3.3. Let X be a Hausdorff topological space, let µ be a Radon probability
measure on X, and let f : X → R be a bounded lower semicontinuous function. Then∫

X
f dµ = sup

∫
X
g dµ,

where the supremum is taken over upper semicontinuous functions g : X → R which
are (pointwise) dominated by f .

Proof. Without loss of generality, f > 0. We may approximate f uniformly by simple
lower semicontinuous functions, i.e., positive scalar linear combinations of characteristic
functions of open sets. Thus, it suffices to handle the case that f is the characteristic
function of an open set, say f = χU .

In this case, since µ is inner regular, µ(X) is the supremum of measures of compact
sets K contained in U , so ∫

X
f dµ = µ(X)

= sup
K
µ(K)

= sup
K

∫
X
χK dµ,

where the suprema are taken over compact sets contained in U ; but now we are done,
since each χK is upper semicontinuous. �

Theorem 3.4. Let A be a unital C*-algebra with the Dixmier property. Let φ ∈ S(A).
The following are equivalent:
(i) φ satisfies that

(3.2) φ(a) 6 sup{φ(z) : z ∈ DA(a) ∩ Z(A)} (a ∈ A+).
(ii) φ is maximally mixed.

Proof. (i)⇒(ii). Suppose for a contradiction that there exists ψ ∈ DA(φ) such that
φ /∈ DA(ψ). Then there exists a self-adjoint element a and t ∈ R separating DA(ψ)
and φ. That is, ψ′(a) 6 t for all ψ′ ∈ DA(ψ) and φ(a) > t. Translating a by a scalar
multiple of the unit we may assume that it is positive. By Lemma 1.1, we get that
ψ(a′) 6 t for all a′ ∈ DA(a). From ψ ∈ DA(φ) we deduce that ψ(a′) = φ(a′) for all
a′ ∈ Z(A). Hence

φ(a) 6 sup{φ(a′) : a′ ∈ DA(a) ∩ Z(A)}
= sup{ψ(a′) : a′ ∈ DA(a) ∩ Z(A)} 6 t.

This contradicts that φ(a) > t.
(ii)⇒(i). First, let us show that if a maximally mixed state φ satisfies (3.2) then so

do all the states equivalent to it. Let φ be a state that satisfies (3.2) and let ψ ∈ DA(φ).
Say ψ = limi φ ◦ Ti, where (Ti)i is a net of mixing operators in Mix(A). Let a ∈ A+.
Since DA(Tia) ⊆ DA(a),

φ(Tia) 6 sup{φ(z) : z ∈ DA(Tia) ∩ Z(A)}
6 sup{φ(z) : z ∈ DA(a) ∩ Z(A)}.
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Hence
ψ(a) = lim

i
φ(Ti · a)

6 sup{φ(z) : z ∈ DA(a) ∩ Z(A)}
= sup{ψ(z) : z ∈ DA(a) ∩ Z(A)},

where the last equality is valid since φ and ψ agree on Z(A).
By Proposition 3.1, it now suffices to show that every probability (Radon) measure

µ on the center can be extended to a state on A satisfying (3.2). For each self-adjoint
element a ∈ A let us define pµ(a) ∈ [0,∞) by

pµ(a) :=
∫
Ẑ
ga(M) dµ(M),

where ga : Ẑ → [0,∞) is the lower semicontinuous function on the spectrum of the
center associated to a in (3.1). Notice that pµ is a seminorm and that pµ(a) 6 ‖a‖ for
all a ∈ Asa (since ga 6 ‖a‖). For any self-adjoint central element z we have that∣∣∣∣ ∫ z(M) dµ(M)

∣∣∣∣ 6 ∫ |z(M)| dµ(M) = pµ(z).

So we can extend µ by the Hahn-Banach extension theorem to a self-adjoint functional
φ such that

|φ(a)| 6 pµ(a) (a ∈ Asa).
Notice that φ(1) = 1 and that ‖φ‖ 6 1, since pµ(a) 6 ‖a‖ for all a ∈ Asa. Hence, φ is
a state.

Finally, to establish (3.2), we will show that pµ(a) is dominated by the right-hand
side of (3.2) (though we don’t need it, in fact this implies that these two quantities are
equal, as the reverse inequality is straightforward). Since ga is lower semicontinuous,
by Lemma 3.3, for any ε > 0, we may find an upper semicontinuous function w ∈ C(Ẑ)
such that w 6 ga and

∫
w(M) dµ(M) >

∫
ga(M) dµ(M) − ε. By the Katetev-Tong

insertion theorem, we may find a continuous function z0 ∈ C(Ẑ)+ such that
fa
w
6 z0 6 ga,

and therefore∫
z0(M) dµ(M) >

∫
w(M) dµ(M) >

∫
ga(M) dµ(M)− ε = pµ(a)− ε.

Thus
pµ(a) 6 sup{φ(z) : z ∈ DA(a) ∩ Z(A)},

as required. �

Corollary 3.5. Let A be a unital C*-algebra with the Dixmier property. Then S∞(A)
is a convex set. Moreover, if φ, ψ ∈ S∞(A) then DA(φ+ ψ) = DA(φ) +DA(ψ).
Proof. To show that S∞(A) is convex, we show that the states that satisfy (3.2) form
a convex set. Let φ, ψ ∈ S∞(A). Let a ∈ A+ and ε > 0. Since φ and ψ satisfy (3.2),
there exist x, y ∈ DA(a) ∩ Z(A) such that

φ(a) 6 φ(x) + ε and ψ(a) 6 ψ(y) + ε.
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By the structure of DA(a) ∩ Z(A) we know that it is a lattice. So we can choose
z ∈ DA(a)∩Z(A) such that x, y 6 z. Now if ρ is a convex combination of φ and ψ then
ρ(a) 6 ρ(z) + ε. This shows that ρ satisfies (3.2) and is therefore maximally mixed.

Let us prove that DA(φ+ ψ) = DA(φ) +DA(ψ) for all φ, ψ ∈ S∞(A). The inclusion
DA(φ+ ψ) ⊆ DA(φ) +DA(ψ) is straightforward: if T ∈ Mix(A∗) then

T (φ+ ψ) = Tψ + Tψ ∈ DA(φ) +DA(ψ),
and letting T range through Mix(A∗), T (φ+ψ) ranges through all of DA(φ+ψ) (Lemma
1.2).

Let φ, ψ ∈ S∞(A) and suppose, for a contradiction, that there exist φ′ ∈ DA(φ) and
ψ′ ∈ DA(ψ) such that φ′ + ψ′ /∈ DA(φ + ψ). Then there exist a ∈ Asa and t ∈ R such
that ρ(a) 6 t for all ρ ∈ DA(φ + ψ) while (φ′ + ψ′)(a) > t. Translating a by a scalar
multiple of the unit we may assume that a is positive. By Lemma 1.1, (φ + ψ)(b) 6 t
for all b ∈ DA(a). Since φ+ψ and φ′+ψ′ agree on Z(A), we obtain that (φ′+ψ′)(b) 6 t
for all b ∈ DA(a)∩Z(A). By convexity, 1

2(φ′+ψ′) ∈ S∞(A). It follows by Theorem 3.4
that, (φ′ + ψ′)(a) 6 t, which contradicts our choice of a and t. �

Remark 3.6. The C*-algebras in Examples 2.16 and 2.17 both have the Dixmier property
(this can be deduced from [3, Theorem 1.1]). So S∞(A) may fail to be weak*-closed for
C*-algebras with the Dixmier property.
Theorem 3.7. Let A be a unital C*-algebra with the Dixmier property. The following
are equivalent.
(i) The set S∞(A) is weak*-closed;
(ii) The set of maximal ideals M such that A/M is either isomorphic to C or has no

bounded traces is a closed subset of Prim(A);
(iii) For each self-adjoint a ∈ A, the set DA(a) ∩ Z(A) contains a maximal element.
Proof. (i)⇒(ii): This is Proposition 2.15 (no Dixmier property required).

(ii)⇒(iii): By translating, we may assume that a > 0. Let X denote the set of
M ∈ Max(A) such that A/M is either isomorphic to C or has no bounded traces,
and we assume that this set is closed in Prim(A). It is evident from the description
of DA(a) ∩ Z(A), at the beginning of this section, that we need only show that the
function ga : Ẑ → R from (3.1) is continuous. Since ga is always lower semicontinuous,
it remains to show that it is upper semicontinuous. Let t > 0. Set

Y := {M ∈ Max(A) : T (A/M) 6= ∅},
which is closed by [3, Theorem 2.6]; for M ∈ Y , A/M has a unique tracial state which
we denote τM . Then

{M ∈ Y : τM(a) > t}
is closed in Max(A). Also, {M ∈ Prim(A) : ‖qM(a)‖ > t} is a compact subset of
Prim(A) ([4]), from which (along with that X is closed) we deduce that

{M ∈ Prim(A) : ‖qM(a)‖ > t} ∩X
is compact. Since Max(A) is Hausdorff, the set above is also closed in Max(A). There-
fore,

{M ∈ Y : τM(a) > t} ∪ ({M ∈ Prim(A) : ‖qM(a)‖ > t} ∩X)
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is closed in Max(A). But this set is g−1
a ([t,∞)), and therefore, ga is upper semicontin-

uous.
(iii)⇒(i): For each self-adjoint element a ∈ A, let za denote the maximal element of

DA(a)∩Z(A), which exists since we are assuming (iii). Given a state φ, the inequality
(3.2) is equivalent to φ(a) 6 φ(za) for all a ∈ A+. The latter inequality is clearly
preserved under weak* limits. By Theorem 3.4, S∞(A) is weak*-closed. �

We recover as a corollary Alberti’s theorem on the maximally mixed states of a von
Neumann algebra ([1]):

Corollary 3.8. Let A be a von Neumann algebra. Then S∞(A) agrees with the weak*-
closure of the convex hull of the set of tracial states and the type (B) states.

Proof. One breaks up the algebra into a finite and a properly infinite one and deals
with each separately. By a theorem of Halpern, in a properly infinite von Neumann
algebra the set of maximal ideals is a closed subset of Prim(A). �

We end this section by taking advantage of the insight we have gained in the case of
the Dixmier property, to provide some examples alluded to earlier. The first example
shows that the set of maximally mixed states may be larger than the norm-closed convex
hull of the tracial states and type (B) states.

Example 3.9. Let B be a simple unital C*-algebra with no bounded traces, and set A :=
C([0, 1], B). If φ is in the norm-closed convex hull of the type (B) states, then the state
φ induces on the centre is in the norm-closed convex hull of point-masses, and therefore
corresponds to a discrete measure on [0, 1]. However, A has the Dixmier property by
[3, Theorem 2.6], and by Theorem 3.7, S∞(A) is weak*-closed, and therefore, in fact,
all of S(A) (since every pure state is of type (B)). So the norm-closed convex hull of
the type (B) states (and tracial states, as there are none) is only a small part of S∞(A)
in this case.

The next example addresses the converse to Theorem 2.1.

Example 3.10. Let A be a simple unital C*-algebra with no bounded traces. Let φ
be a nonzero functional on A such that φ(1) = 0. Then φ is not maximally mixed,
because if it were, then since the zero functional is maximally mixed, it would follow
by Proposition 3.1 that DA(φ) = DA(0) = {0}. However, by Corollary 2.12 (ii), both
the positive and negative parts of φ are maximally mixed.

4. Hausdorff primitive spectrum

Here we impose a different property – Hausdorffness of the primitive ideal space – to
make the study of the structure of S∞(A) tractable.

Theorem 4.1. Let A be a unital C*-algebra with Hausdorff primitive spectrum.
(i) Suppose that A has no tracial states. Then every state of A is maximally mixed.
(ii) Suppose that T (A) 6= ∅. Then the set

Y := {M ∈ Max(A) : T (A/M) 6= ∅}
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is non-empty and closed in Max(A) and

S∞(A) = co(T (A) ∪ S(A)J),
where J := ⋂

M∈Y M is a proper closed ideal of A, and S(A)J consists of all states
in S(A) which arise as extensions of states in S(J).

(iii) Questions 2.13, 2.14, 2.18 all have affirmative answers for A.

Proof. Observe first that, since Prim(A) is Hausdorff, Prim(A) = Max(A) = Glimm(A),
and these spaces are all homeomorphic to Max(Z(A)) via the assignment M 7→ M ∩
Z(A). For each maximal ideal N of Z(A), let φN be the unique pure state of Z(A)
with kernel equal to N .

(i) Since the continuous functions on the compact Hausdorff space Prim(A) separate
the points, it follows from the Dauns-Hofmann theorem that A is a central C∗-algebra.
Combining this with the fact that T (A) is empty, we obtain from [3, Theorem 2.6] that
A has the Dixmier property. Every pure state of A is of type (B), so by Theorem 2.10,
S∞(A) is weak* dense in S(A). It follows from Theorem 3.7 that every state of A is
maximally mixed.

(ii) Since T (A) is non-empty, it contains an extreme point τ by the Krein-Milman
theorem. By [3, Lemma 2.4], τ |Z(A) is a pure state of Z(A) and hence annihilates
M ∩ Z(A) for some M ∈ Max(A). By the Cauchy–Schwartz inequality for states, τ
annihilates the Glimm ideal (M ∩ Z(A))A. But, as noted above, (M ∩ Z(A))A = M
and so τ induces a tracial state of A/M . Thus Y is non-empty. Moreover, τ(J) = {0}
and so, by the Krein-Milman theorem, every tracial state of A annihilates J .

To show that Y is closed, suppose that (Mi) is a net in Y that is convergent to
M ∈ Max(A). For each i, let τi be a tracial state of A that vanishes on Mi. Since T (A)
is weak∗-compact, there exist τ ∈ T (A) and a subnet (τij ) such that τij →j τ . Then

τ |Z(A) = lim
j
φMij

∩Z(A) = φM∩Z(A).

It follows from the Cauchy–Schwartz inequality for states that τ annihilates the Glimm
ideal (M ∩ Z(A))A and so τ induces a tracial state of A/M as before. Thus M ∈ Y ,
as required.

Since Y is closed, every maximal ideal of A/J has the form M/J for some M ∈ Y
and hence every simple quotient of A/J has a tracial state. It follows by Corollary 2.11
that S∞(A/J) = T (A/J). Letting S2 be the set of maximally mixed states of S∞(A)
which factor through A/J , it follows by Theorem 2.6 (ii) that

S2 = S∞(A/J) ◦ qJ = T (A/J) ◦ qJ = T (A).
Under the Dauns–Hofmann isomorphism between Z(A) and C(Prim(A)), Z(J) cor-

responds to C0(Prim(J)), where Prim(J) is identified with an open subset of Prim(A)
(namely Prim(A) \ Y ) in the usual way. It follows that Z(J) separates the primitive
ideals of J +C1 and hence J +C1 is a central C∗-algebra. Since J has no tracial states
(this follows from [3, Lemma 2.2]), so that J +C has a unique tracial state, namely the
one factoring through the quotient (J +C1)/J . Hence by [3, Theorem 2.6], J +C1 has
the Dixmier property. We also have that Prim(J + C1) = Max(J + C1), with every
simple quotient being either traceless or isomorphic to C, and thus by Theorem 3.7,
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S∞(J +C1) is weak*-closed. Since every pure state is either type (B) or tracial, it now
follows from Theorem 2.10 that S∞(J + C1) = S(J + C). By Theorem 2.6 (i) (used
once with J C J + C1 and again with J C A) that S(A)J ⊆ S∞(A). Thus, letting S1
be the set of maximally mixed states of A which are extensions of states from J , we
have

S1 = S(A)J .

By Theorem 2.6 (iii), we have

S∞(A) = co(S1 ∪ S2) = co(S(A)J ∪ T (A)),

as required.
(iii) It is evident in both the cases covered by (i) and (ii) that S∞(A) is convex and

weak*-closed. Now let φ, ψ ∈ S∞(A), and let’s argue that DA(φ+ψ) = DA(φ)+DA(ψ).
In case (i), we saw that A has the Dixmier property, so this holds by Corollary 3.5.

In case (ii), write φ = φ1 + φ2 and ψ = ψ1 + ψ2 where φ1, ψ1 are positive tracial
functionals and φ2, φ2 are non-negative scalar multiples of states in S(A)J ; by Theorem
2.6 (i), φ2|J and ψ2|J are maximally mixed in S(A/J). Since J + C1 has the Dixmier
property (seen in the proof of (ii)), we have by Corollary 3.5 that

DJ((φ2 + ψ2)|J) = DJ(φ2|J) +DJ(ψ2|J).

Then we have

DA(φ+ ψ) = DA(φ1 + φ2 + ψ1 + ψ2)
= DA(φ1 + ψ1) +DA(φ2 + ψ2)
= DA(φ1) +DA(ψ1) +DJ((φ2 + ψ2)|J) ◦ ι∗J
= DA(φ1) +DA(ψ1) + (DJ(φ2|J) +DJ(ψ2)) ◦ ι∗J
= DA(φ1) +DA(ψ1) +DA(φ2) +DA(ψ2)
= DA(φ) +DA(ψ)

where we used Proposition 2.5 (i) in the third and fifth equalities, and Proposition 2.9
(the case that one of the states is tracial) in the second, third, and final equalities. �
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