MAXIMALLY UNITARILY MIXED STATES ON A C*ALGEBRA

ROBERT ARCHBOLD, LEONEL ROBERT, AND AARON TIKUISIS

1. PRELIMINARIES ON DIXMIER SETS

Let A be a C*-algebra. We denote by Ag, the set of self-adjoint elements of A and
by A, the set of positive elements of A. Let A* denote the dual of A. We denote by

AZ, the set of self-adjoint functionals in A* and by A% the set of positive functionals in
A*.

1.1. Dixmier sets on A and A*. We call a set C C A a Dixmier set if it is convex,
norm-closed, and invariant under unitary conjugation. The latter means that uCu* C C
for all unitaries u € A~ (where A™ is the minimal unitization of A, i.e. A itself if A is
unital, and the unitization A+ C1 if A is non-unital). We will largely work with singly
generated Dixmier sets. Given a € A we denote by Da(a) the smallest Dixmier set
containing a.

We let A, and more generally M (A) (the multiplier algebra of A), act on A* in the
usual way: if a € M(A) and ¢ € A* then

ap(z) := ¢lax), (¢a)(z):=d(ra)  (z € A).
A set C' C A* is called a Dixmier set if it is convex, weak*-closed, and invariant under
unitary conjugation. The latter condition means that uCu* C C for all unitaries u
in A~. Given ¢ € A* we denote by D(¢) the Dixmier set generated by ¢, i.e., the
smallest Dixmier set containing ¢. Since Da(¢) is weak*-closed and bounded, it is
weak*-compact.

We shall make frequent use of the fact that A is the dual of A* when the latter
is endowed with the weak* topology [REF|. This, combined with the Hahn-Banach
theorem, implies that elements of A separate disjoint weak™-compact convex sets in A*.

Let V be a subgroup of the unitary group U(M(A)) of M(A). On some occasions
we will need more general versions of the sets defined above where the unitaries range
through V rather than all of U(A~). Thus, given a € A we define D4(a,V) as the
smallest norm-closed convex subset of A containing a and invariant under conjugation
by unitaries in V. Similarly, given ¢ € A* we define D (¢, V) as the the smallest weak™-
closed convex subset of A* containing ¢ and invariant under conjugation by unitaries
in V.

1.2. Mixing operators. Let V be a subgroup of the unitary group U (M (A)) of M(A).
We call a linear operator T: A — A a V-mixing operator if it is defined by an equation
of the form

Ta=>) Mujau] (a € A),

Jj=1
1
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where n € N, \; > 0, u; € V (1 <j <n), and 37_; \; = 1. Elementary properties of
such operators are described in [2, 2.2]. We denote by Mix(A, V) the set of V-mixing
operators on A. If V = U(A™) we simply write Mix(A). Notice that

Dy(a,V)={Ta: T € MiX(A,V)}H'”.

We also call an operator T: A* — A* a V-mixing operator if it is the adjoint of a
V-mixing operator on A. In this case T" has the form

To=>) Nujou; (¢ €A,
j=1

where n € N, \; >0, u; € V (1 <j < n),and 37_; \; = 1. Observe that T is positive
(T'¢ > 0 for all ¢ > 0) and contractive. We denote the set of V-mixing operators on A*
by Mix(A*, V) or simply by Mix(A*) if V = U(A™). Notice that

D4(¢,V) = weak*-cl{T'¢ : T € Mix(A*,V)}.
Lemma 1.1. Let a € A and ¢ € A*. Then

(1.1) Da(¢,V)(a) = ¢(Da(a,V)).

Proof. Since Da(¢,V) is weak*-compact, Da(¢,V)(a) is a closed subset of C. To prove
the lemma it suffices to show that ¢(D4(a,V)) is a dense subset of Da(¢,V)(a). Let
T € Mix(A,V). Then (T*¢)(a) = ¢(Ta). Letting T range through all Mix(A, V) the
left side is dense in D (¢, V)(a) while the right side is dense in ¢(Da(a,V)). O

We will find it convenient to work with more general unitary mixing operators on
A*. We let Mix(A*, V) denote the closure of Mix(A*, V) in the point-weak* topology on
B(A*) (the bounded linear operators on A*). If V = U(A~) we simply write Mix(A*).
Since a limit in the point-weak* topology of positive contractions is again a positive
contraction, all T' € Mix(A*, V) are positive contractions. Since the unit ball of B(A*)
is compact in the point-weak* topology, Mix(A*, V) is a compact set in this topology.

Lemma 1.2. Let ¢ € A*. Then Da(¢,V) ={T¢: T € Mix(A*,V)}.

Proof. Clearly, Tép € Da(¢,V) for all T € Mix(A*,V). Suppose that ¢ € D4(¢, V).
Then T;¢p — 1 in the weak™ topology for some net of V-mixing operators (7;); on A*.
Passing to a subnet of (7;); convergent in the point-weak* topology we get that ¢» = T'¢
for some T € Mix(A*, V). O

2. MAXIMALLY MIXED FUNCTIONALS

Let ¢ € A*. If 0 € D4(¢) we say that ¢ is more unitarily mixed than ¢. We say
that ¢ is mazimally (unitarily) mized if D 4(¢) is minimal with respect to the order by
inclusion in the lattice of weak*-compact Dixmier subsets of A*. Thus ¢ is maximally
mixed if and only if for all 1) € Ds(¢) we have D4(v)) = Da(¢).

It follows from Zorn’s lemma that any weak™-compact Dixmier set contains a max-
imally mixed functional. In particular, D4(¢) contains a maximally mixed functional
for all ¢ € A*. Note also that (i) the zero functional is maximally mixed, (ii) if ¢ is
tracial then D4(¢) = {¢} and hence ¢ is maximally mixed, and (iii) if ¢ is maximally
mixed and A € C then \¢ is maximally mixed.
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Theorem 2.1. Let ¢ € A* be maximally mized. Then the self-adjoint and skew-adjoint
parts of ¢ are maximally mixzed. If ¢ is self-adjoint, then its positive and negative parts
are maximally mized.

Proof. Let ¢, denote the self-adjoint part of ¢. Let ¢ € Da(¢sa). Then ¢p = Ty,
for some T € Mix(A*) (Lemma 1.2 u Mixing operators in Mix(A*) preserve the self-
adjoint part. So v is the self-adjoint part of T'¢. Since ¢ is maximally mixed and
T¢ € Da(¢), there exists S € Mix(A*) such that ST'¢ = ¢. Taking self-adjoint parts
we get St = ¢ga. Thus, ¢g, € Da(1)), as desired. The same argument applies to the
skew-adjoint part.

Suppose now that ¢ is self-adjoint (and maximally mixed). Let us show first that
(Te)y = Té, and (Tp)_ = T¢_ for any T € Mix(A*). Observe that ||| < [|¢| for
all v € D4(¢). But, since ¢ is maximally mixed, we must have that ||¢|| = ||¢|| for all
1 € Dy(¢). That is, all the functionals in D4(¢) have the same norm. Applying 7" on
both sides of p = ¢, — ¢ we get Tp =T, —T¢_. Then,

ITo4ll + [1To- || < lloxll + llo-[l = lIoll = 1 T¢ll-

It follows that T'¢, and T'¢_ are orthogonal (|6, Lemma 3.2.3]). By the uniqueness of
the Jordan decomposition (|6, Theorem 3.2.5]), (T'¢); = T'¢4 and (T'p)_ =T'¢_.
That ¢, and ¢_ are maximally mixed is now straightforward. For suppose that
Y € Da(¢y). By Lemma , there exists 7' € Mix(A*) such that ¢ = T'¢,. Further,
since ¢ is maximally mixed, there exists S € Mix(A*) such that ST¢ = ¢. Then
S = STp, = (STP)y = ¢4. Thus, ¢, is maximally mixed. The same argument
shows that ¢_ is maximally mixed. 0

Due in part to the previous theorem, in the sequel our focus will be on the positive
maximally mixed functionals. We warn however that it is not true that a self-adjoint
functional whose positive and negative parts are maximally mixed is itself maximally
mixed: see Example [3.10]

Theorem 2.2. The set of maximally mized functionals is a norm-closed subset of A*.

Proof. Let ¢ € A* be in the norm-closure of the set of maximally mixed functionals.
Let v € Da(¢). By Lemma , there exists T € Mix(A*) such that ¢ = T'¢. Let
£ > 0. Then there exists a maximally mixed ¢ such that ||¢ — ¢|| < e. Since T is a
contraction,

I =Tl = 1Tp — Tl < |l — ]| <e.
Since ¢ is maximally mixed, there exists S € Mix(A*) such that ST'¢ = ¢. Then,
IS¢ = &ll = ||S¢ — STl < || — T|| < e.

So ||¢ — SY|| < 2. Since Da(v)) is norm-closed, we have ¢ € D(v)) and hence
D4(¢) = Da(¢). Thus, ¢ is maximally mixed. O

We will show in Examples and that the set of maximally mixed functionals

is not always weak*-closed. We do have the following:

Proposition 2.3. Let A be a unital C*-algebra and let ¢ € A7, .
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(i) Suppose that for every a € As, and € > 0 there exists a mazimally mized ¢' € A%
such that ¢' < ¢ and |p(a) — ¢'(a)| < e.Then ¢ is maximally mized.
(ii) Suppose that for every a € Ag, and € > 0 there exists a maximally mived ¢' € A%
such that ¢' > ¢ and |p(a) — ¢'(a)| < €. Then ¢ is mazimally mized.
(ili) Suppose that (¢;); is a norm-bounded net of mazimally mized functionals in A%
which is either upward directed or downward directed relative to the order in A7 .
Then the net is convergent and the limit is mazimally mixed.

Proof. (i) Let ¢ € D4(¢) and suppose that ¢ = T'¢, where T' € Mix(A*). Suppose,
towards a contradiction, that ¢ ¢ D4(1)). Then by the Hahn-Banach theorem there
exist a € Ag, t € R and € > 0 such that p(a) <t for all p € Da(¢) but ¢(a) >t +¢.
Replacing a by a + ||a]|1 and t by t + ||a||||¢]|, we may assume that a > 0.

By hypothesis, there exists a maximally mixed functional ¢" € A7 such that ¢’ < ¢
and ¢'(a) >t +¢/2. Let v = T¢'. Note that, since T is positive, ¢’ < 1. Since ¢’ is
maximally mixed, ¢/ € D4(v'). Thus, there exists S € Mix(A*) such that Sy’ = ¢'.
Let p = Si. Then ¢ < p and so ¢'(a) < p(a) < t since a > 0. This contradicts the
fact that ¢'(a) >t +¢/2. Thus ¢ € Da(v)) and hence D4(¢)) = D4(¢).

(ii) This is similar to (i).

(iii) The convergence of the net follows from weak*-compactness, monotonicity and
the fact that A is the linear span of A,. The limit is maximally mixed by (i) and
(i) O

Next we prepare to examine the relation of the maximally mixed functionals of A
with those of its ideals and quotients. Theorem will tell us that, given an ideal J of
A, maximal mixedness of a functional can be read off by its decomposition with respect
to A/J and J. Part (i) of the following proposition is a classical key result used to
prove permanence of the Dixmier property under suitable extensions; we use part (ii)
in an analogous way to handle Dixmier sets of functionals.

Proposition 2.4. Let a € A and ¢ € A*. The following are true:
(i) Da(a) is equal to the norm-closure of co{eae™™ : h € Ag}.
(ii) Da() is equal to the weak*-closure of co{epe™™" 1 h € A, }.

Proof. (i) [FLAG1] For unital A, the result is given in |2, Proposition 2.4]. For non-
unital A, we apply this result to A~ and use the fact that if h € Ay, and ¢ € R then
ilhtt1) — pitl gih

(ii) This follows from (i) and the Hahn-Banach theorem. Indeed, if (ii) fails to hold
then there is a unitary conjugate of ¢ which does not belong to the weak*-closure of
co{etpe™ . h € Ag,}. Since A* with the weak*-topology has dual space A4, it follows
by the Hahn-Banach separation theorem that there exists u € U(A), a € A and t € R
such that Re(¢(uau*)) > t and Re(¢(e?rae™™)) < t for all h € Ag,. It follows from the
last inequality and part (i) that Re(¢(z)) < ¢ for all € Dy(a). This contradicts the
fact that Re(p(uau*)) > t. O

Proposition 2.5. Let J be a proper, closed two-sided ideal of a unital C*-algebra A.
Letvy:J— Aand q;: A— AJJ denote the inclusion and quotient maps.

(i) The adjoint map 1%5: A* — J* maps Da(¢) onto D;(¢|;) for all ¢ € A



MAXIMALLY UNITARILY MIXED STATES ON A C*-ALGEBRA 5

(ii) We have Da(¢) = Da(¢,U(J + C1)) for all ¢ € A% such that ||¢]| = ||¢|s]-
(iii) The adjoint map q5: (A/J)* — A* maps D4y 5(¢) bijectively to Da(¢ o qz) for all
b€ (A]J);.

Proof. 1f the ideal J is a unital C*-algebra then A = J @& A/J and all three results
(i)-(iii) have a straightforward proof. We thus assume that .J is non-unital. Note then
that J 4+ C1 may be regarded as the unitization of J.

(i) Let us first show that p —% pl; maps D4(¢) into Dy(¢|s). Let ¥ € Da(¢) and
suppose that ©|; ¢ D;(¢|s). Then, by the Hahn-Banach theorem, there exist a € Jg,
and t € R such that ¢(a) > ¢ and p(a) < t for all p € D;(¢|;). It follows from Lemma
applied to ¢|; and a that ¢(b) < t for all b € D;(a). But, by [2, Remark 2.6],
Dj(a) = Da(a) (since a € J). Hence ¢(b) < ¢ for all b € Dy(a). Lemma [1.1] applied
now to ¢ and a, implies that p(a) < t for all p € Da(¢). Since ¥ € D4(¢), we obtain
that 1(a) < ¢ which gives a contradiction. Thus ¢* maps D4(¢) into D (¢ ;).

Let us prove surjectivity. Since (% is weak*-continuous, the image of Da(¢) is a
weak*-compact convex subset of D;(¢|;). For every T' € Mix(A,U(J 4+ C1)) we have
(poT)|; = ¢|lso0T|;. Clearly, every mixing operator in Mix(.J) has the form T'|; for
some T € Mix(A,U(J + C1)). Thus, letting T range through Mix(A,U(J + C1)) the
functionals ¢|; o T'|; range through a dense subset of D;(¢|;). This shows that the
image of D4(¢) by ¢% is also dense in D (o] ).

(i) Clearly D(¢,U(J + C1)) C D4(¢). To prove the opposite inclusion it suffices
to show that ugpu* € Da(p,U(J + C1)) for all u € U(A). Let v € U(A) and set
Y = uou*. By (i), ¥|; € Dy(¢|s), so there exists a net of mixing operators (7}); in
Mix(A,U(J + C1)) such that

(@0 Ty = (¢]s) o (Tils) "5 ol

Passing to a subnet if necessary, we may assume that ¢ o T; — ¢’ € Da(o,U(J + C1)).
Then ¢'|; = 1[;. Moreover [FLAG4], (||| < l|l¢]| = [l¢[s]] = [[¢[,]|- By the uniqueness
of the norm-preserving extension of a positive functional, we get that ¢’ = ¢. Thus,
b € Da(é,U(J +C1)).

(iii) The image of D, ;(¢) by ¢ is the set {poqs : p € Dass(¢)}. This set is convex,
weak™-compact, and contains ¢ o ¢;. Moreover, for u € U(A) and p € Da/;(¢) we have
u(p o qr)u* = (vpv*) o q5, where v = qy(u) € U(A/J). Hence {poqy:p € Dass(¢)} is
invariant under unitary conjugations. It follows that

Da(poqs) S{poqs:p€ Dass(d)}.

To prove the reverse inclusion it suffices to show that the left side is dense in the right
side (since the left side is weak*-compact). By Proposition (ii) (applied in A/.J),
it suffices to show that e®*ge=%* o ¢; belongs to Da(¢ o q;) for all k € (A/J)s. But if
k € (A/J)sa then we may find h € Ag, such that g;(h) = k, from which it follows that

(e™pe™™) 0 qs =" (p0qs)e™ € Da(poqy),

as desired.
We have shown that ¢ maps Da,;(¢) onto Da(¢oqy). Since ¢ is also injective, the
result follows. 0
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Let J C A be as above a proper closed two-sided ideal of A. Let (A%)” denote the
set of functionals ¢ € A* such that [|¢| = |[¢|s||. Let (A%); denote the functionals
¢ € A* such that ¢(J) = {0}. Recall then that every ¢ € A% can be expressed in the
form ¢ = ¢ + ¢o, with ¢; € (A%)7 and ¢» € (A%), and that this decomposition is
unique (see, for example, [4, 2.11.7]).

Theorem 2.6. Let A be a unital C*-algebra and let J be a proper closed ideal of A.
Let ¢ € A% and write ¢ = ¢1 + P2, where ¢1, o € A% are such that ¢1 € (A%)” and
¢a € (A%)-
(i) ¢1 is mazimally mized if and only if ¢1|; € J is mazimally mized.
(i) ¢o is mazximally mized if and only if the functional that it induces on AJJ is
maximally mized.
(iii) ¢ is maxzimally mized if and only if both ¢1 and ¢9 are mazximally mixzed. Moreover,

in this case D (@) = Da(d1) + Da(p2).

Proof. (i) Suppose first that ¢; is maximally mixed. Let ¢/ € D;(¢1|;). By Proposition
(i), there exists ¥ € D4(¢y1) such that ¥|; = ¢'. Since ¢; is maximally mixed,
¢1 € Da(v). Then, again by Proposition[2.5(i), ¢1]; € D;(¢'). Thus, ¢1|, is maximally
mixed.

Let us prove the converse. Let ¢ € Da(¢1). Then ¢|; € D;(¢1]s) by Proposition
(i). Since ¢1|, is maximally mixed, ¢1|; € D;(1|;). By Proposition [2.5] (i), there exists
¢y € Da(v) such that ¢}|; = ¢1|;. Moreover, ||| < ||| < ||¢1]|. By the uniqueness
of the norm-preserving extension of a positive functional, ¢} = ¢1. So ¢1 € D4(v), as
desired.

(ii) This is a rather straightforward consequence of Proposition (iif). Let ¢ €

A/J)* be such that ¢ = boqy. Suppose that b is maximally mlxed By Proposition
(iii), if ¢ € DA(¢p) then 1) = 1) o gy for some ¥ € Dasy(¢). Since ¢ is maximally
mixed, ¢ € DA/J(&). Again by Proposition (111) ¢ € DA(w) as desired. Suppose
on the other hand that ¢ is maximally mixed. Let Ve DA/J( 5). Then ¢ oq; € Du(¢).

Hence, ¢ € Da( o q;). By Proposition [2.5 (iii), ¢ € Da,s(¢) as desired.

(iii) Suppose that ¢ is maximally mixed Let T € Mix(A*). Let us show first that
Tor € (A%)7 and Ty € (A%),. It is clear that T'gy € (A%),, since ¢ € (A%),
and (A% ), is a Dixmier set. Thus, restricting to J in T'¢ = T'¢; + T'¢, we obtain
that (T'¢)|; = (T¢1)|s. Since ¢ is maximally mixed, ¢ € Ds(T'¢), and therefore

d|l; € Dy((T¢)|;) by Proposition [2.5] (i). Hence,

ool = oLl < WD)l = (T Pa)sl

So [|[T1]| < ||@1]l < [[(Té1)]s|l, which shows that T'¢; € (A%)7 (by the definition of
(A1)7).

lto prove that ¢; and ¢, are maximally mixed we proceed as follows: Since ¢ is
maximally mixed, there exists S € Mix(A*) such that ST¢ = ¢. We thus have that
¢ = ST¢; + ST¢y. Using the last paragraph with ST in place of T, we have that
ST¢y € (A7), and ST¢, € (A%)7. By the uniqueness of the decomposition of ¢ into
a functional in (A%)” and one in (A%); we conclude that ST¢; = ¢1 and ST'¢s = ¢o.
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Thus, for any T € Mix(A*) there exists S € Mix(A*) such that ST¢; = ¢; and
ST¢s = ¢9. In view of Lemma this shows that ¢; and ¢9 are maximally mixed.

Suppose now that both ¢; and ¢, are maximally mixed. Let us show first that
Da(¢) = Da(é1) + Da(¢2). The inclusion Da(¢) € Da(¢p1) + Da(pe) is clear, for if
T € Mix(A*) then T'¢ = Ty + T o, which belongs to D 4(¢1) + Da(¢2), and by Lemma
[1.2) T'¢ ranges through all of D4(¢). Let ¢} € Da(¢1) and ¢ € D4(¢) and let us show
that ¢ + ¢, € Da(¢). Choose T' € Mix(A*) such that Ty = ¢, so that T'¢p = T'p; + .
Recall that, as shown above, operators in Mix(A*) preserve the decomposition of a
maximally mixed functional into functionals in (A% )7 and (A%),. Hence, Ty € (A%)”.
Since ¢, € D4(T¢;), there exists S € Mix(A*) such that ST¢, = ¢,. Moreover,
by Proposition (ii), we can choose S € Mix(A*,U(J + C1)). Observe then that
S¢l, = ¢ (since ¢, vanishes on J). Hence, ST'¢ = ¢} + ¢}, as desired.

Continue to assume that ¢; and ¢, are maximally mixed and let us show that ¢
is maximally mixed. Let ¢’ € Da(¢). Then ¢/ = ¢} + ¢}, where ¢} € Da(¢1) and
¢y € Da(pa). So

Da(¢) = Da(¢1) + Dalpa) = Da(¢y) + Da(dy) = Da(d),

where we use the fact that ¢} and ¢}, are maximally mixed, and the result of the previous
paragraph, for the final equality. Hence, ¢ is maximally mixed. O

Corollary 2.7. Let A be a non-unital C*-algebra and ¢ € A*. Then ¢ is mazimally
mazed if and only if its norm preserving extension to A~ is mazimally mized.

In view of the previous corollary in the sequel we focus our attention on unital
C*-algebras. Further, since the scalar multiplies of a maximally mixed functional are
maximally mixed, we work with states. We denote by S(A) the state space of A and
by S (A) the set of maximally mixed states of A.

Let A be a unital C*-algebra. Consider states ¢ € S(A) of the following two types:
(A) ¢ is tracial,

(B) ¢ factors through a simple quotient A/M without bounded traces.

We will also, where appropriate, speak of type (B) positive functionals (these are pos-
itive scalar multiples of type (B) states). Not much effort is needed to see that the
states of these types are maximally mixed (for tracial states, this is obvious, whereas
for type (B) states, it follows from a short argument in Lemma below); this prompts
us to ponder whether all maximally mixed states can be described in terms of these
ones. We show in Theorem [2.10|that we are close to getting all maximally mixed states
by taking the convex hull of these ones — although we don’t know whether the set of
maximally mixed states is convex, see Question below!

Lemma 2.8. If B is a simple unital C*-algebra with no bounded traces, then for ev-
ery state ¢ € S(B), Dp(¢) = S(B), and thus every state on B is mazimally mized.
Therefore every type (B) state on a unital C*-algebra is mazimally mized.

Proof. Suppose for a contradiction that there exists ) € S(B) \ Dp(¢). By the Hahn-
Banach theorem, there exist a € Ag, and t € R such that D4(¢)(a) < t (i.e., s < ¢ forall
s € Dy(¢)(a)) and ¥(a) > t. Translating by a scalar, we may assume that a is positive.
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We then know that ¢(Da(a)) < ¢ (Lemma [L.1]) and ¢(a) > ¢. But ||a|| - 1 € Da(a) (by
[5, Théoreme 4]), and so ||a|| < ¢, which contradicts that ¢ (a) > t.
The final statement now follows by Theorem (ii). O

Proposition 2.9. Let A be a unital C*-algebra. Let ¢ € A% be maximally mized
and let 1 € A% be either tracial or type (B). Then ¢ + 1 is maximally mized and

Da(¢+ 1) = Da(o) + Da(v).

Proof. 1f 9 is tracial then D4(¢ + ) = Da(¢) + ¢, from which the result follows at
once. Suppose then that 1 is type (B), i.e., it factors through a simple quotient A/M
without bounded traces. Let ¢ = ¢ + ¢o, where ¢1 € (A%)M and ¢y € (A% )y Then

¢+ =01+ (2 + ).
By Theorem (iii), ¢y is maximally mixed. On the other hand, ¢+ is type (B) (it
factors through A/M), so by Lemma , it is maximally mixed. Hence, by Theorem
(iii), ¢ = @1 + (P2 + 1) is maximally mixed. Moreover, Theorem (iii) also shows
that D4(¢) = Da(¢1) + Da(pa + ). But Da(¢e + 1) = (¢2(1) + ¥(1))S(A) s, where
S(A)y = S(A/M) o gy (i.e., all states that factor through A/M). So
Da(¢) = Dal¢r) + ¢2(1)S(A)m + (1) S(A)m
= Da(¢1) + Dal¢2) + Da(¥)
= Da(¢) + Da(¥),

using Theorem [2.6 (iii) again for the last equality. O
Theorem 2.10. Let A be a unital C*-algebra, and let A denote the convex hull of the
—~—weak™

set of states that are either tracial or type (B). Then Al C Sxu(A)CA .
Examples 2.16] 2.17], and show that neither inequality in the above theorem can

be turned into an equality.

Proof. Tt follows by Proposition that A C S, (A), and so by Theorem

On the other hand, to show that S, (A) is contained in the weak*-closure of A, it
suffices to show that for any ¢ € S(A) the Dixmier set D 4(¢) has nonempty intersection

with AV Suppose, for the sake of contradiction, that this is not the case for some
¢ € S(A). Then, by the Hahn-Banach theorem, there exists a self-adjoint element a
and real numbers t; < ty such that ¥(a) < ¢; for all v € A and ¢'(a) > t, for all
' € D4(¢). Translating a by a multiple of the unit we can assume that it is positive.
Since Da(¢)(a) = ¢(Da(a)) (Lemma , we have that ¢(a’) > to for all ' € Da(a).
On the other hand, ¥(a) < t; for every tracial state and every state that factors
through a simple quotient without bounded traces. By [3, Theorem 4.12], the distance
from D4(a) to 0 is at most ¢;. Thus, there exists a’ € D4(a) such that ||a'|| < to. This
contradicts that ¢(a’) > t. O

Corollary 2.11. Let A be a unital C*-algebra such that every simple quotient of A has
a bounded trace. Then all the mazximally mized states of A are tracial.
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In the case of simple C*-algebras we obtain a complete description of the maximally
mixed positive functionals:

Corollary 2.12. Let A be a simple C*-algebra.

(i) If A is unital and has at least one non-zero bounded trace then every mazimally
mized positive functional on A is tracial.
(i) If A is unital and has no bounded traces then all the positive functionals on A are
mazximally mized.
(iii) If A is non-unital then every mazximally mized positive functional on A is tracial.

Proof. (i) follows from Corollary [2.11] while (ii) is Lemma 2.8} For (iii), note that A~
has only one simple quotient, namely C, and it has a bounded trace. Hence by Corollary
2.11] every maximally mixed state on A™ is tracial, and then (iii) follows from Theorem
2.6/ (1). O

Question 2.13. Let A be a unital C*-algebra. Is the set So(A) of maximally mixed
states convex?

A closely related question is the following:
Question 2.14. Do we have Da(¢ + 1) = Da(¢) + Da(v) for all ¢,1p € S, (A)?

An affirmative answer to this question also answers affirmatively Question [2.13]
Indeed, suppose that Question has an affirmative answer and say we are given
O, € Soo(A) and ¢ € D(¢) and ¢/ € D(1)). Then

Da(¢+¢) = Da(¢) + Da(¥) = Da(¢') + Da(¥) = Da(¢' + ).
Recall that Proposition [2.9] answers Question affirmatively in the case that 1 is
either tracial or type (B).

Turning to the question of whether the containment S (A) C AV s strict, where
A is as defined in Theorem it is evident from that theorem that (non-)strictness of
this inequality is equivalent to the natural question of whether S, (A) is weak*-closed.
The next proposition gives an obstruction to S, (A) being weak*-closed — in fact, it is
the only obstruction we have been able to find, see Question [2.18

Proposition 2.15. Let A be a unital C*-algebra such that Sy (A) is a weak*-closed sub-
set of S(A). Then the set of all mazimal ideals M such that A/M is either isomorphic
to C or has no bounded traces is a closed subset of Prim(A).

Proof. Let X denote the set of all all maximal ideals M such that A/M is either
isomorphic to C or has no bounded traces. Let J = Ny;ex M. Let N € Prim(A) be an
adherence point of X i.e, J C N. Then every state on A that factors through A/N is
a weak™ limit of convex combinations of states that factor through A/M, with M € X
(l4]). Notice that So(A/M) = S(A/M) for all M € X. Thus, all the states that factor
through A/M, with M € X, are maximally mixed. It follows that all states factoring
through A/N are maximally mixed, and so all states of A/N are maximally mixed by
Theorem (ii).

Since N is primitive, let ¢ € S(A/N) be a pure state whose GNS representation is
faithful. Then any pure state ¢» on A/N is a weak™ limit of vector states (with respect
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to the GNS representation) by |4, Corollary 3.4.3]. By the unitary version of Kadison’s
Transitivity Theorem ([4, Theorem 2.8.3 (iii)]), each of these vector states is in fact
unitarily equivalent to ¢, and thus v is a weak™ limit of unitary conjugates of ¢. By
approximating arbitrary states on A/N by convex combinations of pure states, we find
that S(A/N) = D4 n(¢). Since all states on A/N are maximally mixed, it follows that
S(A/N) = Dan(2) for all ¢ € S(A/N).

This implies that A/N is simple, for otherwise the states factoring through a non-
trivial quotient would form a proper Dixmier set. From Corollary We see that A/N
must be either isomorphic to C or without bounded traces. Thus, N € X. O

The examples below show that S, (A) may fail to be weak*-closed.

Ezample 2.16. Fix a simple unital C*-algebra B without bounded traces (e.g., the
Cuntz algebra O,). Let A be the C*-subalgebra of C([0, 1], M5(B)) of functions f such
that f(1) € My(C) C My(B). For each t € [0,1] let M; = {f € A : f(t) = 0}.
Then A/M; = My(B) for all 0 <t < 1. So M; is a maximal ideal such that A/M; is
simple without bounded traces. The maximal ideal M, is an adherence point of the set
{M;:0<t<1}. However, A/M; = M(C) has a bounded trace and is not isomorphic
to C. Thus, S« (A) is not weak*-closed, by Proposition [2.15

Ezxample 2.17. Again fix a simple unital C*-algebra B without bounded traces. Let A
be the C*-subalgebra of C({1,2,...,00},(B®K)™) of f such that f(n) € M,(B)+Cl1
for all n € N, where we regard M, (B) embedded in B ® K as the top right corner.
For each n € N define I,, = {f € A : e, f(n) = 0}, where ¢, is the unit of M, (B).
Then I, is a maximal ideal for all n = 1,2,... and A/I,, = M,(B) has no bounded
traces. Since N, I, = {0}, the set {7, : n € N} is dense in Prim(A). Consider the ideal
Io ={f: f(c0) =0}. Since A/l = (B ® K)~ is a prime C*-algebra, I, € Prim(A).
But /. is not maximal. By Proposition 2.1 Ss(4) is not weak*-closed.

If one wanted an algebra A with no bounded traces in which S (A) is not weak*-
closed, one can simply tensor the example just given with a nuclear, unital, simple,
traceless C*-algebra (this operation does not change the ideal lattice, so the same
obstruction applies).

Question 2.18. Is the converse of Proposition true? That is, let A be separable and
unital. Suppose that the set of maximal ideals M such that A/M is either isomorphic
to C or has no bounded traces is a closed subset of Prim(A). Is Sy (A) weak*-closed?

In the next section we answer affirmatively Questions [2.13] [2.14] and for C*-
algebras with the Dixmier property.

3. C*-ALGEBRAS WITH THE DIXMIER PROPERTY

Let A be a unital C*-algebra. Let Z(A) denote its center. Recall that A is said to
have the Dixmier property if Da(a) N Z(A) is non-empty for all a € A. Henceforth in
this section we assume that A is a unital C*-algebra with the Dixmier property.

To analyze the maximally mixed states for such A, we will make frequent use of a
description of Da(a) N Z(A) (for a self-adjoint) found in [3] (between Theorem 2.6 and

Corollary 2.7, with details in the proof of Theorem 2.6). Let Z denote the spectrum of
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Z(A), which, by weak centrality of A, we identify with the set of maximal ideals of A.
For a € A self-adjoint, define f,, g, : Z >R by

(M) = minsp(qu(a)),  if A/M has no bounded traces;
‘ o v (a), otherwise,

where 7 is the (necessarily unique) tracial state on A which factors through A/M.
Likewise,

(3.1) Ga(M) = {maX sp(qar(a)), if A/M has no bounded traces;

Tv(a), otherwise.

Then f, is upper semicontinuous, g, is lower semicontinuous, f, < ¢,, and, identifying

Z(A) = C(Z) now,
Du(a)NZ(A)={2€C(Z):z=z"and f, < z < go}-

Let us say that two maximally mixed bounded functionals ¢ and 1) are equivalent if
they generate the same Dixmier set, i.e., Da(¢) = Da(v)).

Proposition 3.1. The equivalence classes of maximally mized, bounded functionals on
A are in bijective correspondence with the bounded functionals on the center of A. The
correspondence is given by the restriction map ¢ — ¢|zay, for ¢ mazimally mized.

Proof. Taking self-adjoint and skew-adjoint parts, we may reduce to the case of self-
adjoint functionals. Any two equivalent self-adjoint functionals agree on the center,
so the mapping is well defined on equivalence classes. To see that it is onto, fix a
self-adjoint functional p on the center. Then the set of all ¢ € A%, whose restriction
to Z(A) is p is a weak*-compact Dixmier set. It thus must contain maximally mixed
functionals.

Let us now show that the mapping is injective. Let ¢, A%, be two maximally mixed
self-adjoint functionals that agree on the center. Suppose for a contradiction that
Da(¢) # Da(v)). Then D4(¢) and D4(¢)) are disjoint. By the Hahn-Banach theorem,
we can find a € As, and real numbers t; < 5 such that ¢'(a) < t; for all ¢’ € D4(¢) and
Y'(a) =ty for all Y’ € Da(p). By Lemma, ¢(a') < t; and ¢(a’) > t, for all a’ € Dy(a).
This holds in particular for o’ € Da(a) N Z(A). This contradicts that ¢ and ¢ agree on
Z(A). O

Remark 3.2. The previous proposition implies that if A has the Dixmier property then
Da(¢), for ¢ € S(A), contains a unique equivalence class of maximally mixed states;
namely, the maximally mixed states that agree with ¢ on Z(A). This is in general not
true for C*-algebras without the Dixmier property. Take for example A to be a simple
unital C*-algebra with at least two tracial states and let ¢ be a pure state on A. Then
D 4(¢) is the set of all states, so it contains both tracial states (which are inequivalent
maximally mixed states).

We need the following little lemma in the proceeding theorem.
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Lemma 3.3. Let X be a Hausdorff topological space, let pu be a Radon probability
measure on X, and let f : X — R be a bounded lower semicontinuous function. Then

/ fduzsup/ gdu,
X X

where the supremum is taken over upper semicontinuous functions g : X — R which
are (pointwise) dominated by f.

Proof. Without loss of generality, f > 0. We may approximate f uniformly by simple
lower semicontinuous functions, i.e., positive scalar linear combinations of characteristic
functions of open sets. Thus, it suffices to handle the case that f is the characteristic
function of an open set, say f = xu.

In this case, since u is inner regular, p(X) is the supremum of measures of compact
sets K contained in U, so

[ Fn=p(x)
= sup (K)

= sup / XK dft,
K JX

where the suprema are taken over compact sets contained in U; but now we are done,
since each Y is upper semicontinuous. O

Theorem 3.4. Let A be a unital C*-algebra with the Dizmier property. Let ¢ € S(A).
The following are equivalent:

(i) ¢ satisfies that
(3.2) o(a) <sup{p(z):z € Dala)NZ(A)} (a€ Ay).
(i) ¢ is mazimally mized.
Proof. (i)=-(ii). Suppose for a contradiction that there exists 1 € D4(¢) such that
¢ ¢ Da(v). Then there exists a self-adjoint element a and t € R separating D 4(v))
and ¢. That is, ¢¥/(a) < t for all ¥/ € D4(v)) and ¢(a) > t. Translating a by a scalar
multiple of the unit we may assume that it is positive. By Lemma [1.1| we get that
YP(a') < tfor all @’ € Dy(a). From ¢ € Da(¢) we deduce that ¢(a’) = ¢(a’) for all
a' € Z(A). Hence
o(a) < sup{o(d’) : d' € Dala)NZ(A)}
=sup{¢(a’) :a' € Da(a) N Z(A)} < t.
This contradicts that ¢(a) > t.

(ii)=-(i). First, let us show that if a maximally mixed state ¢ satisfies (3.2]) then so
do all the states equivalent to it. Let ¢ be a state that satisfies (3.2) and let ) € D4 (o).
Say 1 = lim; ¢ o T}, where (T}); is a net of mixing operators in Mix(A). Let a € A,.
Since D(T;a) € Da(a),
sup{p(z) : z € Da(Tia) N Z(A)}
sup{¢p(z) : 2 € Dy(a) N Z(A)}.
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Hence
b(a) = limo(T; - a)
<sup{p(z) : z € Dala)NZ(A)}
=sup{(z) : 2 € Da(a) N Z(A)},
where the last equality is valid since ¢ and 1) agree on Z(A).
By Proposition , it now suffices to show that every probability (Radon) measure

p on the center can be extended to a state on A satisfying (3.2)). For each self-adjoint
element a € A let us define p,(a) € [0,00) by

= /Aga(M d
Z

where g, : 7 = [0,00) is the lower semicontinuous function on the spectrum of the
center associated to a in (3.1). Notice that p, is a seminorm and that p,(a) < ||a|| for
all a € Ay, (since g, < ||a]|). For any self-adjoint central element z we have that

[ 200 du(n)| < [1200] du(d1) = p(2).

So we can extend p by the Hahn-Banach extension theorem to a self-adjoint functional

¢ such that
[9(a)] <pula) (a0 € As).

Notice that ¢(1) = 1 and that ||¢[| < 1, since p,(a) < ||a] for all a € Ag,. Hence, ¢ is
a state.

Finally, to establish (3.2), we will show that p,(a) is dominated by the right-hand
side of (though we don’t need it, in fact this implies that these two quantities are
equal, as the reverse inequality is straightforward). Since g, is lower semicontinuous,

by Lemma , for any € > 0, we may find an upper semicontinuous function w € C (Z )
such that w < g, and [w(M)du(M) > [g.(M)du(M) — . By the Katetev-Tong
insertion theorem, we may find a continuous function zq € C(Z), such that

fa g

w 20 < Ga,

and therefore
[0y du(M) > [w(M)dp(M) > [ gu(M) du(M) ~ & = p,(a) — =.
Thus

pula) <sup{o(2) : z € Da(a) N Z(A)},
as required. O

Corollary 3.5. Let A be a unital C*-algebra with the Dizmier property. Then So(A)
is a convex set. Moreover, if ¢, € Sy(A) then Do(¢ 4+ ) = Da(¢) + Da()).

Proof. To show that S, (A) is convex, we show that the states that satisfy (3.2]) form
a convex set. Let ¢,1) € Sio(A). Let a € AL and € > 0. Since ¢ and ¢ satisfy (3.2)),
there exist z,y € Da(a) N Z(A) such that

¢(a) < () + ¢ and Y(a) < P(y) +e.
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By the structure of Da(a) N Z(A) we know that it is a lattice. So we can choose
z € Dy(a)NZ(A) such that z,y < z. Now if p is a convex combination of ¢ and 1 then
p(a) < p(z) + €. This shows that p satisfies and is therefore maximally mixed.

Let us prove that D4(¢ + ¢) = Da(¢) + Da(¢) for all ¢, ¢ € Sy(A). The inclusion
Da(¢p+ 1) C Da(p) + Da(v) is straightforward: if T € Mix(A*) then

T(p+v) =T+ Ty € Ds(¢) + Da(),
and letting T range through Mix(A*), T((¢+1) ranges through all of D 4(¢+1) (Lemma
1)

Let ¢,1 € So(A) and suppose, for a contradiction, that there exist ¢’ € D4(¢) and
Y € Da(1)) such that ¢’ + ' & D4(¢ + ). Then there exist a € Ay, and ¢ € R such
that p(a) < t for all p € Da(¢ + ) while (¢ +¢')(a) > t. Translating a by a scalar
multiple of the unit we may assume that a is positive. By Lemma (p+)(b) <t
forall b € D(a). Since ¢p+1) and ¢' +1' agree on Z(A), we obtain that (¢’ +¢')(b) < ¢
for all b € Da(a) N Z(A). By convexity, (¢ 4+ ') € Sx(A). It follows by Theorem
that, (¢’ + ¢')(a) < t, which contradicts our choice of a and t. O

Remark 3.6. The C*-algebras in Examples and both have the Dixmier property
(this can be deduced from [3, Theorem 1.1]). So So(A) may fail to be weak*-closed for
C*-algebras with the Dixmier property.

Theorem 3.7. Let A be a unital C*-algebra with the Dizmier property. The following
are equivalent.
(i) The set Sx(A) is weak*-closed;
(ii) The set of maximal ideals M such that A/M is either isomorphic to C or has no
bounded traces is a closed subset of Prim(A);
(iii) For each self-adjoint a € A, the set Da(a) N Z(A) contains a maximal element.
Proof. (i)=(ii): This is Proposition [2.15] (no Dixmier property required).

(ii)=-(iii): By translating, we may assume that a > 0. Let X denote the set of
M € Max(A) such that A/M is either isomorphic to C or has no bounded traces,
and we assume that this set is closed in Prim(A). It is evident from the description
of Da(a) N Z(A), at the beginning of this section, that we need only show that the
function g, : Z — R from is continuous. Since g, is always lower semicontinuous,
it remains to show that it is upper semicontinuous. Let t > 0. Set

Y :={M € Max(A) : T(A/M) # @&},
which is closed by [3, Theorem 2.6]; for M € Y, A/M has a unique tracial state which
we denote 73;,. Then
{M eY :1y(a) >t}
is closed in Max(A). Also, {M € Prim(A) : |lqm(a)|| = t} is a compact subset of
Prim(A) ([4]), from which (along with that X is closed) we deduce that

{M € Prim(A) : qu(a)]| > £} 0 X

is compact. Since Max(A) is Hausdorff, the set above is also closed in Max(A). There-

fore,
{MeY :myla) 2t} U({M € Prim(A) : |lqu(a)] =t} N X)
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is closed in Max(A). But this set is g, '([t,c0)), and therefore, g, is upper semicontin-
uous.

(iii)=(i): For each self-adjoint element a € A, let z, denote the maximal element of
D4(a) N Z(A), which exists since we are assuming (iii). Given a state ¢, the inequality
is equivalent to ¢(a) < ¢(z,) for all @ € Ay. The latter inequality is clearly
preserved under weak* limits. By Theorem [3.4] S..(A) is weak*-closed. O

We recover as a corollary Alberti’s theorem on the maximally mixed states of a von
Neumann algebra ([1]):

Corollary 3.8. Let A be a von Neumann algebra. Then So(A) agrees with the weak*-
closure of the convex hull of the set of tracial states and the type (B) states.

Proof. One breaks up the algebra into a finite and a properly infinite one and deals
with each separately. By a theorem of Halpern, in a properly infinite von Neumann
algebra the set of maximal ideals is a closed subset of Prim(A). O

We end this section by taking advantage of the insight we have gained in the case of
the Dixmier property, to provide some examples alluded to earlier. The first example
shows that the set of maximally mixed states may be larger than the norm-closed convex
hull of the tracial states and type (B) states.

Ezxample 3.9. Let B be a simple unital C*-algebra with no bounded traces, and set A :=
C(]0,1], B). If ¢ is in the norm-closed convex hull of the type (B) states, then the state
¢ induces on the centre is in the norm-closed convex hull of point-masses, and therefore
corresponds to a discrete measure on [0, 1]. However, A has the Dixmier property by
[3, Theorem 2.6], and by Theorem [3.7} So(A) is weak*-closed, and therefore, in fact,
all of S(A) (since every pure state is of type (B)). So the norm-closed convex hull of
the type (B) states (and tracial states, as there are none) is only a small part of S, (A)
in this case.

The next example addresses the converse to Theorem [2.1]

Ezxample 3.10. Let A be a simple unital C*-algebra with no bounded traces. Let ¢
be a nonzero functional on A such that ¢(1) = 0. Then ¢ is not maximally mixed,
because if it were, then since the zero functional is maximally mixed, it would follow

by Proposition [3.1| that D4(¢) = D4(0) = {0}. However, by Corollary (ii), both
the positive and negative parts of ¢ are maximally mixed.
4. HAUSDORFF PRIMITIVE SPECTRUM

Here we impose a different property — Hausdorffness of the primitive ideal space — to
make the study of the structure of S, (A) tractable.

Theorem 4.1. Let A be a unital C*-algebra with Hausdorff primitive spectrum.

(i) Suppose that A has no tracial states. Then every state of A is mazimally mized.
(ii) Suppose that T(A) # @. Then the set

Y :={M € Max(A) : T(A/M) # o}



16 ARCHBOLD, ROBERT, AND TIKUISIS

is non-empty and closed in Max(A) and
Sao(A) = co(T(A) U S(A)"),

where J := Nyrey M is a proper closed ideal of A, and S(A)” consists of all states
in S(A) which arise as extensions of states in S(J).
(iii) Questions|2.15,|2.14}, [2.18 all have affirmative answers for A.

Proof. Observe first that, since Prim(A) is Hausdorff, Prim(A) = Max(A4) = Glimm(A),
and these spaces are all homeomorphic to Max(Z(A)) via the assignment M — M N
Z(A). For each maximal ideal N of Z(A), let ¢y be the unique pure state of Z(A)
with kernel equal to N.

(i) Since the continuous functions on the compact Hausdorff space Prim(A) separate
the points, it follows from the Dauns-Hofmann theorem that A is a central C*-algebra.
Combining this with the fact that T'(A) is empty, we obtain from [3, Theorem 2.6] that
A has the Dixmier property. Every pure state of A is of type (B), so by Theorem m
Seo(A) is weak™ dense in S(A). It follows from Theorem that every state of A is
maximally mixed.

(ii) Since T'(A) is non-empty, it contains an extreme point 7 by the Krein-Milman
theorem. By [3, Lemma 2.4], 7|;4) is a pure state of Z(A) and hence annihilates
M N Z(A) for some M € Max(A). By the Cauchy-Schwartz inequality for states, 7
annihilates the Glimm ideal (M N Z(A))A. But, as noted above, (M N Z(A))A =M
and so 7 induces a tracial state of A/M. Thus Y is non-empty. Moreover, 7(J) = {0}
and so, by the Krein-Milman theorem, every tracial state of A annihilates J.

To show that Y is closed, suppose that (M;) is a net in Y that is convergent to
M € Max(A). For each i, let 7; be a tracial state of A that vanishes on M;. Since T'(A)
is weak*-compact, there exist 7 € T'(4) and a subnet (7;;) such that 7;;, —; 7. Then

T|z(a) = li]m Ouy;nz(4) = Punz(A)-

It follows from the Cauchy—Schwartz inequality for states that 7 annihilates the Glimm
ideal (M N Z(A))A and so 7 induces a tracial state of A/M as before. Thus M €Y,
as required.

Since Y is closed, every maximal ideal of A/J has the form M/J for some M € Y
and hence every simple quotient of A/J has a tracial state. It follows by Corollary
that So(A/J) = T(A/J). Letting Sy be the set of maximally mixed states of S (A)
which factor through A/J, it follows by Theorem (ii) that

Sy = Soo(A)J) 0 gy = T(A)J) 0 qy = T(A).

Under the Dauns-Hofmann isomorphism between Z(A) and C(Prim(A)), Z(J) cor-
responds to Co(Prim(.J)), where Prim(.J) is identified with an open subset of Prim(A)
(namely Prim(A) \ Y ) in the usual way. It follows that Z(J) separates the primitive
ideals of J + C1 and hence J + C1 is a central C*-algebra. Since J has no tracial states
(this follows from [3], Lemma 2.2]), so that J 4 C has a unique tracial state, namely the
one factoring through the quotient (J + C1)/.J. Hence by [3, Theorem 2.6], J + C1 has
the Dixmier property. We also have that Prim(J 4+ C1) = Max(J + C1), with every
simple quotient being either traceless or isomorphic to C, and thus by Theorem
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Seo(J + C1) is weak™-closed. Since every pure state is either type (B) or tracial, it now
follows from Theorem that S (J + Cl) = S(J + C). By Theorem (i) (used
once with J < J + C1 and again with J <1 A) that S(A4)7 C Sy (A). Thus, letting S;
be the set of maximally mixed states of A which are extensions of states from J, we
have

By Theorem [2.6| (iii), we have
Sso(A) = co(S) U Sy) = co(S(A)7 uT(A)),

as required.

(iii) It is evident in both the cases covered by (i) and (ii) that S, (A) is convex and
weak*-closed. Now let ¢, 1 € Sy (A), and let’s argue that Da(¢+1) = Da(¢p)+Da(v).
In case (i), we saw that A has the Dixmier property, so this holds by Corollary .

In case (ii), write ¢ = @1 + ¢2 and ¢ = 1 + ¥y where ¢y, are positive tracial
functionals and ¢y, ¢, are non-negative scalar multiples of states in S(A)7; by Theorem
(i), ¢2|s and 15|, are maximally mixed in S(A/J). Since J + C1 has the Dixmier
property (seen in the proof of (ii)), we have by Corollary that

Dy((p2 +2)|s) = Dy(d2]s) + Ds(tels).

Then we have

Da(¢p+ ) = Da(é1 + ¢z + ¥1 + o)

a(P1 + Y1) + Da(da + 1)2)

A(91) + Da(¥1) + Dy((g2 +102)]5) o L
(
(
(

A1) + Da(n) + (Dy(als) + Dy(ih2)) o 15
A(61) + Da(t1) + Da(pa) + Da(ths)
A(9) + Da(¥)

where we used Proposition (i) in the third and fifth equalities, and Proposition
(the case that one of the states is tracial) in the second, third, and final equalities. [J

I
DS oOoO oo
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