

Regularity for C^* -algebras and the Toms–Winter conjecture

Aaron Tikuisis

a.tikuisis@abdn.ac.uk

University of Aberdeen

Coauthors

Parts of this talk concern joint work with:

Wilhelm Winter;

George Elliott, Zhuang Niu, and Luis Santiago;

Joan Bosa, Nate Brown, Yasuhiko Sato, Stuart White, and
Wilhelm Winter.

The Toms–Winter conjecture

Definition

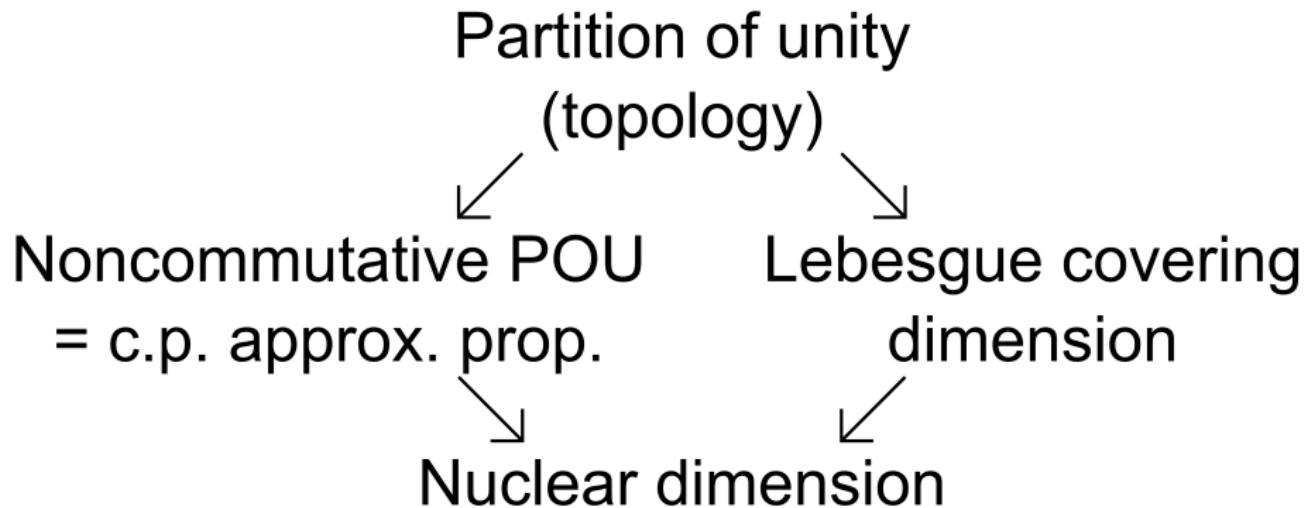
An **Elliott algebra** is a simple separable amenable C^* -algebra.

Conjecture (Toms–Winter, ~ 2008)

If A is an Elliott algebra, then the following are equivalent:

- (i) A has finite nuclear dimension;
- (ii) A is \mathcal{Z} -stable (where \mathcal{Z} is the Jiang–Su algebra);
- (iii) A has strict comparison of positive elements.

Strict comparison of positive elements is a property of the Cuntz semigroup (an algebraic invariant); in practice, it is the easiest property to verify.



Completely positive approximation property:

$$\begin{array}{ccc} A & \xrightarrow{\text{id}_A} & A \\ & \searrow \psi \text{ c.p.c.} & \nearrow \phi \text{ c.p.c.} \\ & F \text{ f.d.} & \end{array}$$

commuting in point- $\|\cdot\|$, i.e., $\|\phi(\psi(a)) - a\|$ small on a finite subset.

Nuclear dimension

Nuclear dimension at most n (Kirchberg–Winter '04, Winter–Zacharias '10):

$$\begin{array}{ccc} A & \xrightarrow{\text{id}_A} & A \\ & \searrow \psi \text{ c.p.c.} & \nearrow \phi \text{ e.p.e. } (n+1)\text{-colourable} \\ & F \text{ f.d.} & \end{array}$$

commuting in point- $\|\cdot\|$, i.e., $\|\phi(\psi(a)) - a\|$ small on a finite subset.

$(n+1)$ -colourable: $F = F_0 \oplus \cdots \oplus F_n$ such that $\phi|_{F_i}$ is c.p.c. and orthogonality-preserving (a.k.a. order zero).

Eg. $\dim_{nuc} C(X) = \dim X$.

Nuclear dimension: some properties

Finite nuclear dimension is preserved by:

- quotients;
- hereditary subalgebras;
- extensions;
- tensor products;
- ~~inductive limits~~. if $\dim_{nuc} (\varinjlim A_k) \leq \sup \dim_{nuc} (A_k)$ (this was a mistake).

Eg. $\dim_{nuc} \mathcal{O}_n = 1$ (Winter–Zacharias '10)

$\dim_{nuc} A = 0$ if and only if A is AF.

The Jiang–Su algebra

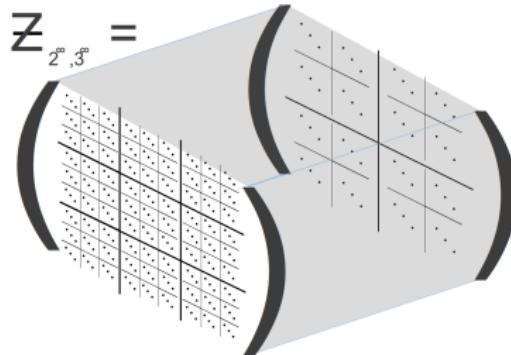
Recall: a UHF algebra is an inductive limit of matrix algebras

$$\overline{\left(\begin{array}{|c|c|} \hline \begin{array}{|c|c|} \hline & & & \\ \hline \end{array} & \begin{array}{|c|c|} \hline & & & \\ \hline \end{array} \\ \hline \begin{array}{|c|c|} \hline & & & \\ \hline \end{array} & \begin{array}{|c|c|} \hline & & & \\ \hline \end{array} \\ \hline \end{array} \right)} \cdot \cdot \cdot$$

$$M_{2^\infty}$$

$$M_{k^\infty} \cong M_{k^\infty} \otimes M_{k^\infty} \cong M_{k^\infty}^{\otimes \infty}.$$

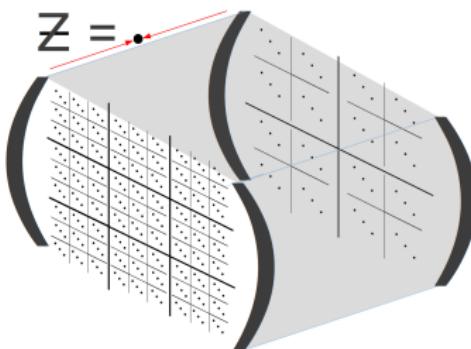
The Jiang–Su algebra



$$\begin{aligned} \mathcal{Z}_{2^\infty, 3^\infty} := \{ f \in C([0, 1], M_{2^\infty} \otimes M_{3^\infty}) \mid \\ f(0) \in 1_{M_{2^\infty}} \otimes M_{3^\infty}, \\ f(1) \in M_{2^\infty} \otimes 1_{M_{3^\infty}} \}. \end{aligned}$$

This has no nontrivial projections.

The Jiang–Su algebra

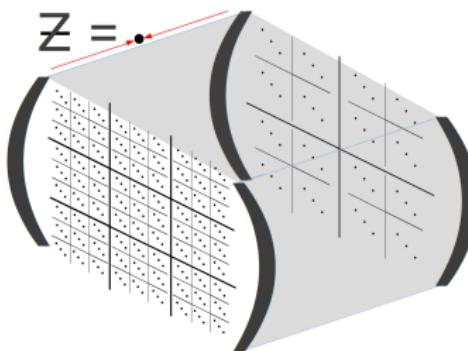


The Jiang–Su algebra is

$$\mathcal{Z} := \varinjlim(\mathcal{Z}_{2^\infty, 3^\infty}, \alpha),$$

where $\alpha : \mathcal{Z}_{2^\infty, 3^\infty} \rightarrow \mathcal{Z}_{2^\infty, 3^\infty}$ is a trace-collapsing unital *-homomorphism.

The Jiang–Su algebra



$$\mathcal{Z} := \varinjlim(\mathcal{Z}_{2^\infty, 3^\infty}, \alpha).$$

\mathcal{Z} is simple.

$K_0(\mathcal{Z}) = \mathbb{Z}; K_1(\mathcal{Z}) = 0.$

\mathcal{Z} has unique trace.

\mathcal{Z} is also strongly self-absorbing.

$\mathcal{Z} \cong \mathcal{Z}^{\otimes \infty}.$

A C^* -algebra A is **\mathcal{Z} -stable** if $A \cong A \otimes \mathcal{Z}$.

Theorem

If A is separable and unital, then it is \mathcal{Z} -stable if and only if \mathcal{Z} embeds into

$$A_\infty \cap A',$$

where $A_\infty := c_b(\mathbb{N}, A) / c_0(\mathbb{N}, A)$.

Trivial observation: for any B , the C^* -algebra $B \otimes \mathcal{Z}$ is \mathcal{Z} -stable.

\mathcal{Z} -stabilization is a way to tame a wild C^* -algebra.

\mathcal{Z} -stability: some properties

\mathcal{Z} -stability is preserved by:

- quotients;
- hereditary subalgebras;
- extensions;
- tensor products;
- inductive limits.

Just like finite nuclear dimension.

Conjecture (Elliott, '90s)

Elliott algebras are classified by K-theory paired with traces.

Disproven by examples of Villadsen ('98), refined by Rørdam ('03), Toms ('08).

Villadsen's C^* -algebras have “high topological dimension” (in some vague sense).

Classification results apply to C^* -algebras of “low topological dimension”, eg., purely infinite C^* -algebras, AH algebras of slow dimension growth.

The Toms–Winter conjecture is an attempt to make “low topological dimension” less vague, more robust.

Origins of the Toms–Winter conjecture: classification

Classification can be used to prove (ii) \Rightarrow (i) in many cases:

Theorem (Kirchberg ~'94, Phillips '00)

Purely infinite Elliott algebras in the UCT-class satisfy the Elliott conjecture.

It follows that if A is an infinite Elliott algebra, in the UCT class, and is \mathcal{Z} -stable, then

$$A = \varinjlim A_n,$$

where A_n is a direct sum of $C(\mathbb{T}) \otimes M_k \otimes \mathcal{O}_m$'s.

Hence $\dim_{nuc}(A) < \infty$ (in fact ≤ 5).

Origins of the Toms–Winter conjecture: classification

Classification can be used to prove (ii) \Rightarrow (i) in many cases:

Theorem (Gong '02, Elliott-Gong-Li '07, Lin '11)

Simple \mathcal{Z} -stable AH algebras satisfy the Elliott conjecture.

It follows that if A is a \mathcal{Z} -stable AH algebra then

$$A = \varinjlim A_n,$$

where A_n is a direct sum of $C(X) \otimes M_k$'s where $\dim X \leq 3$.

Hence, $\dim_{nuc} A < \infty$ (in fact, ≤ 3).

Origins of the Toms–Winter conjecture: classification

Classification can be used to prove (ii) \Rightarrow (i) in many cases:

Similarly, Gong-Lin-Niu classification (arXiv '15) shows that if A is a \mathcal{Z} -stable Elliott algebra that is “rationally generalized tracial rank one” and in the UCT-class, then $\dim_{nuc}(A) \leq 2$.

Finite nuclear dimension implies \mathcal{Z} -stability

Theorem (Winter '10 & '12, T '14)

If A is simple and separable and $\dim_{nuc} A < \infty$ then $A \cong A \otimes \mathcal{Z}$.

It is desirable to establish that \mathcal{Z} -stability implies finite nuclear dimension without using classification, because:

- Classification requires strong hypotheses (UCT, simplicity, tracial approximation, . . .);
- Classification arguments are lengthy (Gong: 208 pages; Elliott-Gong-Li: 72 pages; Gong-Lin-Niu: 271 pages);
- Finite nuclear dimension is a useful hypothesis for classification (eg. Winter, arXiv '13).

“Von Neumann algebraic” approach

If A is a \mathcal{Z} -stable unital Elliott algebra then it has finite nuclear dimension provided:

- A is infinite (Matui-Sato '14);
- A has unique trace and is quasidiagonal (Matui-Sato '14);
- A has unique trace (Sato-White-Winter, arXiv '14);
- the extreme boundary of $T(A)$ is compact
(Brown-Bosa-Sato-T-White-Winter arXiv '15).

Subhomogeneous algebra approach

$A \otimes \mathcal{Z}$ has finite nuclear dimension provided:

- A is a commutative C^* -algebra (T-Winter '14) (hence also if A is AH);
- A is a subhomogeneous C^* -algebra (Elliott-Niu-Santiago-T arXiv '15) (hence also if A is ASH).

Using this fact, Elliott-Gong-Lin-Niu showed that simple \mathcal{Z} -stable ASH algebras are classifiable.