

Classification of C^* -algebras

Aaron Tikuisis

University of Ottawa

Great Plains Operator Theory Seminar

Joint work with José Carrión, Jamie Gabe, Chris Schafhauser, and Stuart White.

Classifying C^* -algebras

The C^* -algebra classification theorem

Let A, B be simple, separable, nuclear, \mathcal{Z} -stable C^* -algebras which satisfy the UCT. Then $A \cong B$ if and only if $\text{Ell}(A) \cong \text{Ell}(B)$.

Regarded as the C^* -analogue of the Connes–Haagerup classification of injective factors.

Plan:

- The hypotheses
- Examples of classifiable C^* -algebras
- The invariant
- Glimpse of our proof

Recall:

McDuff's theorem

A II_1 factor M is \mathcal{R} -stable (it satisfies $M \cong M \bar{\otimes} \mathcal{R}$) iff $M_n(\mathbb{C})$ embeds into $M^\omega \cap M'$ (for some/any $n > 1$).

For a II_1 factor:

- A tensorial copy of \mathcal{R} provides useful space.
- Is characterized by a richness of the central sequence algebra.

In C^* -algebras, a rich central sequence algebra and tensorial space are equally useful. However, an appropriate object analogous to \mathcal{R} is more elusive.

The most direct analogue to \mathcal{R} is a UHF algebra M_{n^∞} (where n is a natural – or even supernatural – number).

However, M_{n^∞} -stability is a rather unnatural condition, as it imposes severe K -theoretic restrictions. (If $A \cong A \otimes M_{n^\infty}$ then every projection in A can be divided into n pairwise equivalent subprojections. E.g. M_{2^∞} is not M_{3^∞} -stable.)

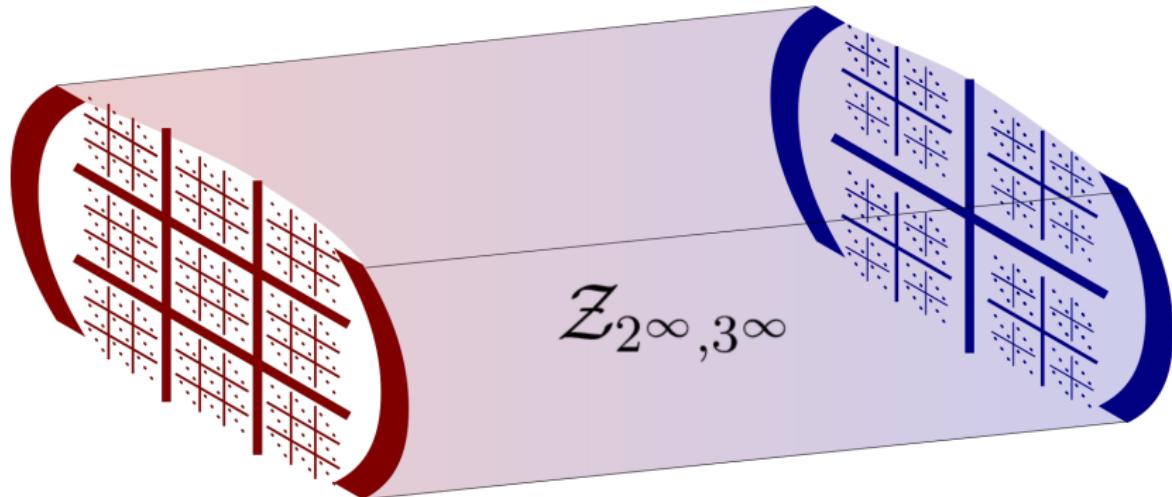
The *Jiang–Su algebra* \mathcal{Z} can be thought of as a UHF algebra, with no non-trivial projections.

It is the universal *strongly self-absorbing* C^* -algebra. (Some others are M_{n^∞} , \mathcal{O}_2 , \mathcal{O}_∞ .)

\mathcal{Z} -stability

The *Jiang–Su algebra* \mathcal{Z} is an inductive limit of C^* -algebras of the form

$$\mathcal{Z}_{n^\infty, m^\infty} := \left\{ f \in C([0, 1], M_{n^\infty} \otimes M_{m^\infty}) : \begin{array}{l} f(0) \in M_{n^\infty} \otimes 1 \\ f(1) \in 1 \otimes M_{m^\infty} \end{array} \right\}.$$



McDuff characterization of \mathcal{Z} -stability (Dadarlat–Toms '09)

A unital C^* -algebra A satisfies $A \cong A \otimes \mathcal{Z}$ if and only if some subhomogeneous C^* -algebra without characters embeds into $A_\omega \cap A'$.

Here,

$$A_\omega := \ell_\infty(\mathbb{N}, A) / \{(a_n)_{n=1}^\infty : \lim_{n \rightarrow \omega} \|a_n\| = 0\}.$$

(Cf. other McDuff-type characterizations by Kirchberg '04, Toms–Winter '07.)

KK-theory and the Universal Coefficient Theorem (UCT)

Kasparov's *KK*-theory is a bivariant functor unifying (and generalizing) *K*-theory and *K*-homology.

It is important in C^* -algebra classification and index theory.

The *Universal Coefficient Theorem* is an exact sequence that Rosenberg and Schochet found to hold among a large class of separable nuclear C^* -algebras, with good permanence properties. It expresses *KK*-theory in terms of *K*-theory.

C^* -algebras satisfying this exact sequence are said to *satisfy the UCT*.

KK-theory and the Universal Coefficient Theorem (UCT)

The *Universal Coefficient Theorem* is an exact sequence that Rosenberg and Schochet found to hold among a large class of separable nuclear C^* -algebras, with good permanence properties. It expresses KK-theory in terms of K -theory.

C^* -algebras satisfying this exact sequence are said to *satisfy the UCT*.

Proposition

A separable nuclear C^* -algebra A satisfies the UCT iff it is KK-equivalent to an abelian C^* -algebra.

(KK-equivalence is defined in terms of KK-theory; it can be thought of as a very weak form of homotopy equivalence.)

Definition

The *classifiable class* consists of simple, separable, nuclear, \mathcal{Z} -stable C^* -algebras which satisfy the UCT.

The C^* -algebra classification theorem (restated)

Let A, B be in the classifiable class. Then $A \cong B$ if and only if $\text{Ell}(A) \cong \text{Ell}(B)$.

What C^* -algebras are in the classifiable class?

Examples: approximately subhomogeneous C^* -algebras

Approximately subhomogeneous C^* -algebras

A C^* -algebra is *subhomogeneous* if there is a bound on the dimension of irreducible representations.

An *approximately subhomogeneous* C^* -algebra is an inductive limit of subhomogeneous C^* -algebras.

It has *slow dimension growth* if

$(\text{topological dimension})/(\text{matricial dimension}) \rightarrow 0$.

All simple approximately subhomogeneous C^* -algebras with slow dimension growth are in the classifiable class (\mathcal{Z} -stability: Toms '11, Winter '12).

In fact, every C^* -algebra in the classifiable class is of this form (Elliott '96 + classification).

Examples: group representations

If G is a nilpotent group and $\pi : G \rightarrow \mathcal{B}(\mathcal{H})$ is an irreducible representation then $C^*(\pi(G))$ is in the classifiable class.

Eckhardt–Gillaspy '16: UCT.

Eckhardt–Gillaspy–McKenney '19: \mathcal{Z} -stability.

Question

If G is virtually nilpotent and $\pi : G \rightarrow \mathcal{B}(\mathcal{H})$ is an irreducible representation, does $C^*(\pi(G))$ satisfy the UCT?

If so, then $C^*(\pi(G))$ is in the classifiable class.

Examples: dynamical systems

Let G be a countable amenable group, X a compact metrizable space, and $\alpha : G \curvearrowright X$ a free minimal action.

$C(X) \rtimes_{\alpha} G$ always satisfies the UCT (Tu '99) and is simple and separable. The challenge is to prove \mathcal{Z} -stability.

Examples: dynamical systems

Let G be a countable amenable group, X a compact metrizable space, and $\alpha : G \curvearrowright X$ a free minimal action.

$C(X) \rtimes_\alpha G$ is in the classifiable class in the following cases:

- $\dim(X) < \infty$ and G has locally subexponential growth (Kerr–Szabó '20, Downarowicz–Zhang '23).
- $\dim(X) < \infty$ and G is elementary amenable (Kerr–Naryshkin '21).
- X is the Cantor set, for generic actions α (Conley–Jackson–Kerr–Marks–Seward–Tucker–Drob '18).
- $G = \mathbb{Z}^d$ and the action has mean dimension zero (Elliott–Niu '17, Niu arXiv'19).

Examples: dynamical systems

Let G be a countable amenable group, X a compact metrizable space, and $\alpha : G \curvearrowright X$ a free minimal action.

Questions

1. Is $C(X) \rtimes_{\alpha} G$ always in the classifiable class for $\dim(X) < \infty$?
2. Is there a dynamical characterization of when $C(X) \rtimes_{\alpha} G$ is in the classifiable class? (Mean dimension zero? Small boundary property?)

Examples: crossed products (noncommutative dynamics)

Let G be a torsion-free countable amenable group, A in the classifiable class, and $\alpha : G \curvearrowright A$ an outer action.

If A has unique trace then $A \rtimes_{\alpha} G$ is classifiable (Sato '19, and under less restrictions on $T(A)$ by Gardella–Hirshberg arXiv'18).

For a unital C^* -algebra A , the Elliott invariant $\text{Ell}(A)$ consists of:

- $K_0(A)$ (the Grothendieck group from homotopy classes of projections in matrix algebras over A),
- $K_1(A)$ (the Grothendieck group from homotopy classes of unitaries in matrix algebras over A),
- $T(A)$ (the set of tracial states on A),
- $\rho_A : T(A) \times K_0(A) \rightarrow \mathbb{R}$, $\rho_A(\tau, [p]) := \tau(p)$,
- $[1_A]_0 \in K_0(A)$, and
- $K_0(A)_+ := \{[p]_0 : p \in \bigcup_n M_n(A)\} \subseteq K_0(A)$ (this information is redundant for classifiable C^* -algebras).

Classifying embeddings

Theorem (Carrión–Gabe–Schafhauser–T–White)

Let A be a separable exact C^* -algebra which satisfies the UCT.

Let B be a separable \mathcal{Z} -stable C^* -algebra with $T(B)$ compact and nonempty and with strict comparison with respect to traces.

Then the full nuclear $*$ -homomorphisms from A to B (or B_∞) are classified up to approximate unitary equivalence by an augmented “total invariant” $\underline{K}T(\cdot)$ (richer than the Elliott invariant).

The hypothesis $T(B) \neq \emptyset$ can be dropped – but in this case the result is due to Phillips and Kirchberg.

Classifying embeddings

Theorem (Carrión–Gabe–Schafhauser–T–White)

Let A be separable exact UCT; B separable \mathcal{Z} -stable with $T(B)$ compact and with strict comparison. Then full nuclear $*$ -homomorphisms $A \rightarrow B$ (or B_∞) are classified by $\underline{KT}(\cdot)$.

Classification means both:

- Uniqueness: given two such $*$ -homomorphisms, if they agree on the invariant then they are approximately unitarily equivalent; and
- Existence: given a morphism of invariants, there is a $*$ -homomorphism which realizes it.

The total invariant

Let A be a unital C^* -algebra.

The total invariant $\underline{KT}(A)$ consists of K-theory and traces (as in the Elliott invariant), as well as:

- Total K -theory (a.k.a. K -theory with coefficients)

$$K_i(A; \mathbb{Z}_n) := K_i(A \otimes C_{\mathbb{Z}_n}), \quad n \in \mathbb{N}$$

where $C_{\mathbb{Z}_n}$ is a nuclear C^* -algebra with $K_*(C_{\mathbb{Z}_n}) = \mathbb{Z}_n \oplus 0$,

- Hausdorffized unitary algebraic K -theory

$$\overline{K}_1^{\text{alg}, \text{u}} := \bigcup_n U(M_n(A)) / \bigcup_n \overline{\{uvu^*v^* : U \in U(M_n(A))\}},$$

- A number of maps relating these (and K-theory and traces).

Proposition

Let A, B be C^* -algebras. Then any isomorphism $\text{Ell}(A) \rightarrow \text{Ell}(B)$ extends to an isomorphism $\underline{KT}(A) \rightarrow \underline{KT}(B)$.

The “Elliott intertwining argument” derives the C^* -algebra classification theorem from the classification of embeddings.

The Intertwining Argument

Let A, B be C^* -algebras. If there exist $*$ -homomorphisms $\phi : A \rightarrow B$ and $\psi : B \rightarrow A$, such that:

- $\psi \circ \phi : A \rightarrow A$ is approximately unitarily equivalent to id_A , and
- $\phi \circ \psi : B \rightarrow B$ is approximately unitarily equivalent to id_B ,

then $A \cong B$.

In our argument, we write B_∞ as an extension

$$0 \rightarrow J_B \rightarrow B_\infty \rightarrow B^\infty \rightarrow 0,$$

where

$$B^\infty := \ell_\infty(\mathbb{N}, B) / \{(b_n)_n : \lim_{n \rightarrow \omega} \sup_{\tau \in T(B)} \tau(b_n^* b_n) = 0\}.$$

Then

- B^∞ behaves much like a II_1 von Neumann algebra (Castillejos–Evington–T–White–Winter); in particular, we can classify nuclear maps into B^∞ via Connes' theorem.
- From there, it becomes a lifting problem, in which we employ KK -theory.