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ABSTRACT. Generalizing the case of the Toeplitz algebra by Brake and Winter,
we prove that the nuclear dimension of a C*-algebra extension of C(X) by the
compact operators is equal to the dimension of X.

Nuclear dimension is a numerical property of C*-algebras defined by Winter
and Zacharias ([31]) (inspired by an earlier notion by Kirchberg and Winter [21]).
Created by cleverly fusing the completely positive approximation property for C*-
algebras together with Lebesgue’s covering dimension, it is an intriguing concept
that has played a prominent role in the classification of C*-algebras, particularly
through its appearance in the Toms-Winter conjecture (see [29, Section 5]). It has
received a lot of attention in recent years (see [4} [9] [10] 12 1T}, 13}, 14 151 [16] 18],
19, 23] 241, 27, 28], for example).

While many results establish finite nuclear dimension for classes of C*-algebras,
determining the precise value is often a difficult problem. The case of extensions
is an important example of the difficulty. Winter and Zacharias gave an upper
bound for the nuclear dimension of an extension in terms of the values for the
ideal and quotient, but it is easily seen to be non-optimal in the commutative case
where classical techniques apply. Answering a question posed in the paper defining
nuclear dimension, Brake and Winter made a breakthrough in this direction, by
computing the exact value (one) for the nuclear dimension of the Toeplitz algebra
(I6)).

The Toeplitz algebra is, perhaps, the most well-known of the class of algebras
featured in Brown, Douglas, and Fillmore’s seminal extension theory ([7]). Many
other interesting extensions of commutative C*-algebras by the algebra of compact
operators were exposed and studied in the work of Brown, Douglas, and Fillmore
and others; indeed, extensions of the form 0 - K — E — C(X) — 0 can be
classified in terms of the K-homology of X ([20]), where X is a compact metrizable
space.

In this article, we generalize Brake and Winter’s result to these other extensions
of a commutative C*-algebra C'(X) by the compact operators, showing that the
nuclear dimension of any such extension agrees with the covering dimension of X:

Theorem A. Let X be a compact metrizable space and let E be an extension of
C(X) by K:

(0.1) 0—-K—FE—CX)—0.
Then dimp,.F = dim(X).
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Our approach makes use of many of the ideas from [6]. Our main innovation
arises in a step where Brake and Winter extend (up to a small perturbation) approx-
imately order zero maps into matrix algebras, extending from the domain C(S') to
the domain B(S') (Borel functions). This effectively allows a certain 1-dimensional
piece of the overall completely positive approximation to become zero-dimensional.
In the present argument, replacing S' by an arbitrary metrizable compact space
X, we need to be able to similarly extend approximately order zero maps to matrix
algebras, from the domain C'(X) to the domain B(X).

Brake and Winter use a correspondence between order zero maps from C(S') and
normal elements, then apply a classical result of Lin saying that approximately nor-
mal elements (corresponding to approximately order zero maps) can be perturbed
to (exactly) normal elements — to which Borel functional calculus applies. In our
more general setting, order zero maps from C'(X) correspond to *-homomorphisms
from Cy((0,1] x X), and we make use of a more refined result of Lin: a uniqueness
theorem for approximately multiplicative maps from commutative C*-algebras to
matrix algebras ([22]).

However, Lin’s uniqueness theorem has two crucial hypotheses: one K-theoretic
and the other a faithfulness condition. The K-theoretic condition holds trivially in
our case, by the contractibility of (0, 1] x X. The faithfulness condition is originally
written in [22] in terms of a uniform bound on measures of balls of a given radius,
though we reformulate it as a faithful trace condition (see Theorem [2.4]). This
condition means that the theorem cannot be applied automatically as is done in
Brake and Winter’s argument. We require an additional step (Section, to ensure
that we produce cpc order zero maps with an appropriate faithfulness condition in
order to use Lin’s result. The flexibility of an absorbed trivial extension — whose
presence is obtained using classical Brown—Douglas—Fillmore theory — allows us to
realize this extra step.

In [12], the result of Brake and Winter is generalized in a different direction: by
replacing the Toeplitz algebra with a Cuntz—Toeplitz algebra (or more generally,
an extension of a Kirchberg algebra by the compact operators). A further gener-
alization can be found in [I6], where the ideal of compact operators is replaced by
a general stable AF algebra, and the quotient is a possibly non-simple O,-stable
algebra. Their key innovation is to apply a uniqueness theorem due to Gabe ([I7])
for maps from Cy((0, 1], B), where B is a separable nuclear O,-stable C*-algebra,
similar to our use of Lin’s uniqueness theorem.

The paper is organized as follows. Section [l|contains preliminaries about nuclear
dimension and extensions. We go into Lin’s uniqueness theorem and formulate the
relevant consequence of it in Section [2] Section [3]is where we produce appropriate
quasicentral approximate units to achieve appropriate cpc order zero map. Finally,
we prove Theorem [A]in Section

The authors would like to thank Sam Evington, Abe Ng, and Stuart White for
comments on an early version of the paper.

1. PRELIMINARIES

Definition 1.1 ([2I, Definition 3.1],[31, Definition 2.1],[30]). Let A, B be C*-
algebras. A cpc map ¢ : A — B is order zero if it is orthogonality-preserving:
d(a)p(b) = 0 whenever a,b € Ay satisfy ab = 0. The nuclear dimension of A is the
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minimum number d such that for any finite set F C A and any € > 0, there exist fi-
nite dimensional C*-algebras F(O), ... F@  together with cpc maps @ : A — F(®)
and cpe order zero maps ¢V : F) — A, such that

d
> 0D (@) — 2

=0

(1.1)

forallx € F.

The decomposition rank of A is defined in the same way, but additionally asking
that the sum ¢© 4 ... 4 ¢@ : FO g ... g Fd 5 A s epe.

We write dimpy,.A and dr(A) for the nuclear dimension and decomposition rank
(respectively) of A.

<e,

We write K to denote the C*-algebra of compact operators on a separable infinite
dimensional Hilbert space (such as ¢(N)).

Let X be a compact metrizable space. An extension of C(X) by K is a C*-
algebra F fitting into a short exact sequence

(1.2) 0—-K—F—CX)—0.

Extensions of C'(X) by K correspond to injective *-homomorphisms from C(X)
to the Calkin algebra (one direction of this correspondence is described below; see
also [8) Definition 1.5 and Remark 1.6], for example). By the Choi-Effros lifting
theoremﬂ one can lift such a *-homomorphism to a ucp map ¢ : C(X) — B(H),
and the property of being an injective *-homomorphism modulo K translates into
the conditions

(i) ¢(fg) — ¢(f)o(g) € K for all f,g € C(X),
(ii) ¢(f) € K if and only if f = 0.

Definition 1.2. Given a ucp map ¢ : C(X) — B(H) that is an injective *-
homomorphism modulo K (i.e., satisfying (i) and (ii)) above, define

(1.3) Ty =K+ o(C(X)).
(This is the corresponding extension of C(X) by K).

When ¢ : C(X) — B(H) is a genuine *-homomorphism (still injective modulo
KC), then Ty is called an trivial extension. We note that Theorem [A] follows easily
from known results in the case of a trivial extension, as follows: for such an exten-
sion, one can find a quasicentral approximate unit (see Section for (IC, T4) consist-
ing of projections, and then by [21] Proposition 6.2], dimp,. 7T = dr(75) = dim(X).

Given two ucp maps ¢, : C(X) — B(H) satistying (i) and (ii) above, define
p®Y: C(X) > My® B(H) = B(H); this ucp map will satisfy the same conditions
(i) and (ii), and therefore also defines an extension of C'(X) by K.

Theorem 1.3 (Brown-Douglas-Fillmore). Let Ty, Ty be extensions of C(X) by K,
with Ty trivial. Then Ty = Toay-

Proof. This result follows easily from the work of []], as we explain now. By [8|
Theorem 1.17], the extensions corresponding to ¢ and ¢ @ ¢ are equivalent (in the
sense of [8] Definition 1.1]). By [8, Remark 1.6(i)], this implies that 7 = Tpay. O

I fact, a motivating special case of this theorem, due to Arveson, [1], suffices here.
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2. CORRECTING APPROXIMATELY MULTIPLICATIVE MAPS

We make use of the following “approximate uniqueness” result of Lin; we explain
the notation following the statement.

Theorem 2.1 ([22] Theorem 2.10]). Let Y be a compact metric space, let € > 0
and let F C C(Y) be a finite subset. There exists n > 0 satisfying the following:
for any o > 0, there exist v > 0, 6 > 0, a finite subset G C C(Y), a finite subset
H C C(Y)s.a, and a finite subset P C K(C(Y)) satisfying the following:

For any (G, )-multiplicative ucp maps p,v : C(Y) — M, (for some integer
n > 1) for which

(2.1) Pxlp = Yulp,
MT@(OT) >0
for all open balls O, of radius r > n, and
(2.2) |Tp(a) — T¢(a)| < for all a € H,
where T is the tracial state of M, , there is a unitary w in M, such that
(2.3) lo(f) — Aduw(f)]| < < for all f € F.

The object K(A) is the ‘total K-theory’ of A, the direct sum of the K-theory
of A and its K-theory with coefficients, K;(A,Z,) := K;(A ® C,), where C,, is a
commutative C*-algebra such that K¢(C),) = Z,, and K;(C,,) = 0 (see [29]).

We say that a map between C*-algebras ¢ : A — B is (G, §)-multiplicative (where
G C Aandd>0)if

(2.4) le(zy) —e@)e)ll <6, xyeg.

The notation in is a sort of shorthand. Implicitly, one asks for (finitely
many) representatives of appropriate unitaries and projections in C(Y) ® M, and
(C(Y) ® Cp)~ ® M, in order to capture all the classes in the finite set P; call
all these elements Fy. Moreover, it is implicit that by making ¢ small enough and
G large enough, each projection (resp. unitary) in Fy is sent close enough to a
projection (resp. unitary) so that it has a well-defined Ky-class (respectively K-
class), by any (G, §)-multiplicative map (and in particular, by both ¢ and v). Then
is saying that the Ky-class or K-class of ¢¥(a) (depending on whether a is a
projection or unitary) agrees with that of ¢(a), for a € Fy.

We wish to reformulate Lin’s uniqueness theorem in the language of sequence
algebras. In preparation, we have the following definition and lemma.

Definition 2.2. Let B, be a sequence of C*-algebras such that T(By) # O for all
n. Define Boo := [],, Bn/ €D, Bn. A limit trace on B is a trace 7 € T(B) of
the form

(2.5) T((bn)nen) := TPLIL T (bn )

where T, € T(By,) for each n and w is a free ultrafilter. Define Too(Bso) to be the
set of all limit traces on By .

Lemma 2.3. Let B, be a sequence of unital C*-algebras such that T(B,) # 0
for all n. Define Boo := [],, Bn/ D, Bn- Let A be a separable C*-algebra. Let
On,Un : A = B, be a sequence of ucp maps, and let o, : A — By, be the maps
induced by these sequences. Then the following hold.
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(i) ¢ is a *-homomorphism if and only if there is an increasing sequence
(Gn)nen of finite subsets of A such that|],, Gy is dense in A and a sequence
(0n)nen of positive numbers converging to 0, such that o, s (Gn,0n)-
multiplicative for all n.

(ii) Suppose that v,v are *-homomorphisms satisfying p.(x) = . () for all
x € K(A). Then for any finite set P C K(A), there exists ng such that
for alln = ng, (¢n), lp = (¥n), |p-

(iii) 7o = To@ for allT € Too(Bwo) if and only if for every finite set H C A and
v > 0, there exists ng such that for all n > ng, |T(pn(a)) — 7(Yn(a))] <7y
for alla € H and 7 € T(B,).

(iv) ¢ is unitarily equivalent to v if and only if for every finite subset F C A
and € > 0, there exists ng such that, for all n > ng, there is a unitary
u € A such that ||pn(a) — Ady(¢n(a))|| < € for all a € F.

(v) Suppose that B,, has a unique trace, 7, for alln and A = C(Y) for some
compact metric space Y. Let u,, be the probability measure on'Y associated
to the trace T, 0 @, € T(C(Y)). Then inf.cp_(p_)yT o p(a) > 0 for all
a € Ay \ {0} if and only if, for every n > 0 there exists o > 0 and ng
such that for all n > ng and every open ball O, in'Y of radius v > n,
tn(Op) > 0.

Proof. (i): =: Take any increasing sequence (G )72, of finite subsets of A such that
Go = 0 and |J,, G is dense in A, and take any sequence (x)ren of positive numbers
converging to 0. Then for each k, we must have that ¢,, is (G, 0 )-multiplicative, for
n sufficiently large. We may therefore find a sequence (k, )nen converging (possibly
slowly) to oo, such that each ¢, is (G, , Ik, )-multiplicative.

«: This is immediate.

(ii): It suffices to show that, for any projection (respectively unitary) a in AQ M,,
or (A® Cy)~ ® M, (as appropriate), the K;-class of ¢, (a) and ¢, (a) agree, for n
sufficiently large. By replacing A with A ® M,, or (A ® C,)~ ® M,, if necessary,
we may assume a € A. Since the Kj;-class of ¢(a) and 1 (a) are equal, by possibly
enlarging the matrix size, we may assume that they are homotopic. In particular,
there exist projections (resp. unitaries) by,...,br € Boo, such that b = ¢(a),
b = ¥(a), and ||b; — b;y1]| is small, for all ¢ = 1,...,k — 1. By lifting these, there
is ng such that for n > ng, there exist approximate projections (resp. unitaries)
by, ..., by in B, such that ||b; — bit1| is small, for i = 1,..., k— 1, with by = ¢, (a)
and by, = 1, (a). Consequently, ¢, (a) and ¥, (a) have the same K;-class, for n > ng.

(iii): =: Suppose T o ¢ = 7 o and, for a contradiction, there exists a finite
set H C A and v > 0 and infinitely many n for which there exist a € H and
Tn € T(By,) satisfying |mh¢n(a) — Thn(a)] > 7. By passing to a smaller but still
infinite set of these n, we may assume that there is a single a € H for which
|Tnon(a) — Thibn(a)| > v for infinitely many n. Taking an ultrafilter concentrated
on these n, and using it with these 7,, to get a limit trace 7 € T, (Bwo ), We see that
|7(p(a)) — 7(¢(a))] > v > 0, a contradiction.

«: Fix a € A. By the hypothesis, lim,_,o0 |70 (¢n(a)) — T (¢n(a))| = 0 for any
choice of traces 7, € T'(B,). From this it is clear that 7 o p(a) = 7 o ¢(a) for all
T € Too(Bo)-

(iv): This is entirely standard.

(v): =: Given n > 0, by the Lebesgue’s Number Theorem, there is an open
cover Uy,..., U of Y such that every open ball O, of radius > 7 contains one of
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the sets U;. Let f; € C(Y) be a nonzero positive contractive function supported on
U;. Define

o:=g  nf - 7Top(fi);
TET s (Boss)
this is positive by hypothesis. By the argument in (iii), there exists ny such that,
foralln >mngand alli =1,...,k, 7,(pn(fi)) > 0. Given an open ball O, of radius
r > 1, it contains an open set U; for some 4, and so
(26) Hn(Or) > Tn(@n(fz)) > 0.

«: Fixa € AL \{0}. Let ,¢ > 0 be such that there is an open ball O,, of radius
n such that a(z) > 6, for all z € O,,. Let o and ng be as in the hypothesis; then we
have

(2.7) Tn(pn(a)) = 61 (Oy) > bo,
for all n > ng, and therefore 7(¢(a)) > do > 0 for all T € T, (Boo)- O

Here is the recasting of Lin’s uniqueness theoremﬂ by avoiding the use of a
metric on the space X, it allows us to also generalize it to the non-unital case.

Theorem 2.4. Let (my)nen be a sequence of natural numbers and set Bo :=
IL, M.,/ B,, Mi,,. LetY be a second countable locally compact Hausdorff space,
and let p, 1 : Co(Y) — By, be *-homomorphisms, such that 7o o, 701 are faithful
traces on Co(Y') for every 7 € Too(Bwso). Then ¢, are unitarily equivalent if and
only if K(¢) = K() and To@ =701 for every 7 € Too(Bso)-

Proof. The forward implication is immediate, so let us consider the reverse: we
assume that ¢, ¢ agree on K and on traces. If Y is not compact, then the hypotheses
ensure that the unitizations @™, 9~ : Co(Y)™~ — B also agree on K and traces,
and satisfy the faithful trace hypothesis (since the extension of a faithful trace
on Cy(Y) to Co(Y)™ is faithful). Thus, by possibly replacing Y by its one-point
compactification, we may assume that Y is compact.

Let us fix a € C(Y)4 \ {0} and let us show that inf.c7_(p_)7(p(a)) > 0. Write
v(a) = (bn)nen. Suppose for a contradiction that there are traces 7, € Too(Boo)
such that 7,(¢(a)) — 0. Then, since each 7 is a limit trace, there exists ny
arbitrarily large such that 7a,, (bn,) < TK(¢(a)) + 1/k. We may thus choose
ny < ng < ---. If we let w be any ultrafilter concentrated on {ny,ns,...} and
define 7, € T (Bs) to be the corresponding limit trace, it follows that 7, (¢(a)) <
lim infy, My, (bn,,) = 0, contradicting the assumption that 7, 0¢ is a faithful trace.

By the Choi-Effros Lifting Theorem ([5, Theorem C.3]), we may lift ¢, to
sequences of cpc maps ¢, ¥, : A — M,, . Let us explain how to use Theorem
to verify the condition in Lemma iv), which implies that ¢, are unitarily
equivalent. Let F be a finite subset of C'(Y) and let ¢ > 0. Let n > 0 be as in
Theoremfor this 7 and €. By Lemma (V), let 0 > 0 and ng be such that for
all n > ng and every open ball O, in Y of radius r > 7, un(O;) > 0. Let 4,6 > 0,
G CCY), HCCY)sa and P C K(C(Y)) be as in Theorem for this o.
Then by Lemma [2.3(i),(ii),(iii), we may possibly increase ng so that, for all n > ny,
©n, Un are (G, d)-multiplicative and satisfy and . Thus for every n > ng,

2To derive Lin’s theorem from this statement, one needs a converse to Lemma (ii), which
could be established using K-theoretic regularity properties of matrix algebras; since we do not
need this, we do not pursue it further here.
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by Theorem there is a unitary u € M,,, such that ||, (f) — Adu¥n(f)| < €
for all f € F; consequently by Lemma (iv)7 ©, 1 are unitarily equivalent. ([

The following is an easy tracial existence result for *-homomorphisms from a
commutative C*-algebra to a matrix algebra. In the sequel, it will be important to
know that all arbitrarily large matrix sizes can be used in the codomain.

Lemma 2.5. Let Y be a locally compact Hausdorff space. Then for any finite
subset H C Co(Y) and any v > 0 there exists mq such that, for any 7 € T(Co(Y))
and any m > my, there is a *-homomorphism v : Co(Y') — M, such that

(2.8) [7(f) =, (DD <7, fEH,

Proof. Since T(Cy(Y)) is weak*-compact, it suffices to prove that for each 7 €
T(Co(Y)), there exists mg such that for any m > myg there is a *-homomorphism
¥ : Co(Y) — M, satisfying (2.8).

Without loss of generality, let us assume that H consists of positive contractions.
We may approximate the measure corresponding to 7 by a convex combination
(with rational coefficients) of point-mass measures. Consequently, we may find
some k and a *-homomorphism v : Co(Y) — M}, such that

(2.9) [7(f) = 7oz, (o ()] < /2, feH.

Choose a natural number mg > %
Given m > myg, write m = kq—+r where 0 < r < k. Then define ¢ := (o®1,)®p,
where p : Co(Y) — M, is any *-homomorphism. For f € H, we have

(210) Pat () = L, (o)) + =7 (1),

Since both a7, (p(f)) and Tar, (¢¥o(f)) are between 0 and 1, their difference is at
most 1, and so

(2.11) ratn (D)~ Tan, o) < = < £ < T,

and thus

(2.12)  17(f) = 7o, DI < 17 (F) = 7o (o ()] + [7a (o () — 7., ()]
<7

as required. (I

Making use of Lin’s uniqueness theorem (Theorem and the above lemma,
we get the following lifting theorem for *-homomorphisms from contractible spaces.

Theorem 2.6. Let (my)nen be a sequence of natural numbers tending to oo and
set Boo = [I,, M,/ D, Mm,. Let Y be a second countable locally compact
Hausdorff space for which Co(Y) is contmctibleﬁ If o : Co(Y) — By is a *-
homomorphism such that T o ¢ is a faithful trace, for all T € Too(Bwo), then @ lifts
to a *-homomorphism 1 : Co(Y') = [1,, My, ; that is,

(2.13) qoy =g,

where q : [],, My, — B is the quotient map.

3Equivalently, the one-point compactification of Y is contractible.
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Proof. We shall construct a *-homomorphism Co(Y) — [], My,, which agrees
with ¢ on all traces and then appeal to Lin’s Uniqueness Theorem to say that ¢ is
unitarily equivalent to this map (composed with g).

By the Choi—Effros Lifting Theorem, lift ¢ to a sequence of cpc maps ¢, :
CQ(Y) — an.

Let (fx)ren be a dense sequence in Cy(Y). For each k, let m0 ) be the mo given
by Lemmafor H:={f1,..., [} and v := E' Let ng be such that m,, > mék)
for all n > ng. We may, in addition, arrange that ny < mng < ---

By Lemma we may find a *-homomorphism ,, : Co(Y) — M, for each
ng < n < ngt1, such that

1

(2.14) (0t () = Ta, (Bn(F)] < £ i= 1

Defining 1, . .. ,1[1711_1 arbitrarily, this yields a *-homomorphism 1) := (ﬂn)neN :
Co(Y) = I1,, My, . Since

(2.15) Jim [7ar,, (00 (fi) = T, (Wu(£)] = 0

for all 4, it follows that 7 0@ = 70 g ot for all 7 € Th (Bo).

Since Cy(Y) is contractible, K(Cy(Y)) = 0. Consequently, Theorem [2.4] applies
and tells us that there is a unitary u € By, such that ¢ = Ad, o (g o w)

Lifting u to a unitary v € [], anl and setting ¢ := Ad, o ¥, we are done. [

The following corollary encapsulates how we wish to use the above theorem, by
turning it into an order zero extension theorem, via the correspondence between
order zero maps and *-homomorphisms from a cone (see [30, Corollary 3.1]).

In the following we make use of order zero functional calculus (see [30, Corollary
3.2]).

Corollary 2.7. Let (my)nen be a sequence of natural numbers tending to oo and
set Boo = [1,, Mm,,/ D, Mm,. Let X be a compact metrizable space, and let
¢ : C(X) = By be a cpc order zero map satisfying the following faithfulness
condition: for every trace 7 € T (Bso), every nonzero f € Co((0,1])4, and every
nonzero g € C(X),

(2.16) T(f(#)(9)) > 0.

Then ¢ extends to a cpc order zero map ¢ : B(X) — B, where B(X) D C(X) is
the C*-algebra of bounded Borel functions on X.

Proof. By [30, Corollary 3.1], there is a *-homomorphism ¢ : Cy((0,1]) ® C(X) —
Boo given by $(f®g) = f(¢)(g). Since every nonzero positive element of Co((0, 1])®
C(X) dominates one of the form f®g (with f, g > 0 both nonzero), we see that the
faithfulness hypothesis implies that 7o ¢ is a faithful trace on Cy((0,1]) ® C(X),
for every 7 € T (Boo). Therefore by Theorem @ lifts to a *~homomorphism
¥ = (Yn)nen : C’o((O 1)) ® C(X) — [1,, My, . Since each My, is a von Neumann
algebra, each 1, extends to a *-homomorphism ¢, : Co((0,1]) ® B(X) — M,,
(in fact, we can even extend ¢, to the larger algebra B((0,1] x X)), and putting
these 1, together yields an extension of v to 1 : C((0,1]) @ B(X) — [I,, My,

A1t is always possible to lift unitaries from sequence algebras, due to stability of the relation
of being a unitary (see [3, Corollary 2.22]).
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Using the converse direction in [30, Corollary 3.1], the *-homomorphism g o ¥ :
Co((0,1]) ® B(X) — By (where ¢ : [[,, M), — B is the quotient map) gives
rise to a cpc order zero map @ : B(X) — By. Since ¥ extends zﬁ, we see that ¢
extends . O

3. CERTAIN QUASICENTRAL APPROXIMATE UNITS

Recall, for a C*-algebra A and an ideal I, an approximate unit (h,),en for
I is idempotent if hpi1hy, = hy for all n € N and is quasicentral (for (I, A)) if
||hna—ah,|| — 0 for alla € A. Assuming A is separable, a quasicentral approximate
unit always exists (|2, Theorem 1]).

Given an idempotent approximate unit (hy),en for K, it follows that each h,
must have finite rank, and therefore, the hereditary subalgebra (hy,11—hy ) B(H)(hnt1—
hy) can be identified with a matrix algebra, M,,, . We make this identification in
the following.

Lemma 3.1. Let X be a compact metrizable space and let T be a trace on Cy((0, 1] x
X). Then there exists a trivial extension Ty associated to a *-homomorphism
P CO(X) — B(H) (that is injective modulo K) and an idempotent quasicentral
approzimate unit (hy )y for (K, Ty), such that the cpc maps

(3‘1) wn : C((07 1] X X) - (hn+1 - hn)B(H)(thrl - hn) = an
defined by
(3.2) Un(idfy 1) @ 9) 1= (hnt1 — hn) % (9)(9) (1 — hn)

(fork € N,g € C(X)) satisfy limy, o0 Tar,,, Un(f) = 7(f) for all f € Co((0,1] x X).

Proof. Let (fn)nen be a dense sequence in the set of positive contractions in
Co((0,1] x X). For each n, by Lemma 2.5] (with H := {f1,..., fn}), choose some
r, and some *-homomorphism p,, : Cy((0,1] X X) — M, such that

(33 () = Tt (ou (] < 70 i =L

We may assume that % — 0.

Without loss of generality (by decomposing into irreducible representations), p,,
has the form

(3.4) pulf) = diag(F(1"™, 21"), ..., S, 20)
for some tgn), e ,tg: € (0,1] and some xgn), e :v,(:) € X. Without loss of gener-

ality (by possibly adding more points sporadically), we may also assume that for
every ng, {xin) :n > ng} is dense in X.
Define a *-homomorphism ¢ : C(X) — B(H) by

(3.5) ¥(g) = diag(g(«{"), ..., g(@), g(V), ... g(z?),...),
and for each n, define

r1+-+ry_1 times

——
(3.6) hy =diag( T, ... .1 ,¢™ ™o . )ek.

b %

Since {IE") :n > ng}t is dense for every ng, we can see that if g # 0 then ¢(g) € K;
that is, 9 is injective modulo K, and thus ¢ defines a trivial extension Ty.
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Evidently, (hy,)nen is an idempotent approximate identity for K, and it commutes
with the image of ¢ and is therefore quasicentral for (IC,T}).

Since each h,, commutes with the image of ¥, we see that we have ¢,,(f ® g) =
(st = ha)tb(g) for all f € Co((0,1]) and g € C(X).

We have
(3.7)
r14--+r,—1 times
———
hsr — hy = diag( 0, ... 01—\, 1— ¢ "V gD o),

so its hereditary subalgebra is a copy of M,,, where m,, = ry, + rp+1. Making this
identification, and defining 1, as in (3.2)), we have

(38)  vulf®g) = diag(f(1 - ;")g(”),... F(L = tD)g(al),
n+1 n+1) n n
FE g™, F ) <x$;3>>>
Thus in particular, the bottom-right 7,11 entries of v,, exactly constitute the map
pn+1, and so for a positive contraction f € Cp((0,1] x X),

T
(3.9) T, (U (F)) = Tt (g1 ()] < Qm-
Hence, for ¢ < n,

(3.10) ITM,,,, (b (f2)) = T(f)| < |7aa,,, (bn(fi)) — sy, (P (fi)]
+ |71, (Pns1(fi)) — 7(fi))]

1
<2 In + — 0.
Tn + Tntl n+1

It follows, by taking linear combinations and using density, that lim, . 7as,, ¥ (f) =

My

7(f) for all f € Co((0,1] x X). O

We now use the previous lemma to get a quasicentral approximate unit with
tracial properties that we want, inside the direct sum of an arbitrary extension
with a trivial extension.

Corollary 3.2. Let X be a compact metrizable space, let Ty be an extension of
C(X) by K, and let 7 € T(Cy((0,1] x X)). Then there exists a trivial extension Ty,
and a quasicentral approzimate unit (hy)nen for (K, Toaw) such that the cpc maps

(311) (¢ @¢)n : C((0,1] X X) = (hny1 — hn) B(H & H)(hns1 — hn) = My,
defined by

(3.12) (6 ®V)n(idfy 1) ® 9) = (hnsr — ha) % (6)(9) (g1 — ) ®

satisfy i oo Tas,,, (6 V) (f) = 7(f) for all f € Co((0,1] x X).

Proof. Let Ty be a trivial extension and let (h%w))neN be an idempotent quasicen-

k
2

tral approximate unit for (/C,7y) as given by Lemma ﬂ Let (hS{’”)neN be any
idempotent quasicentral approximate unit for (IC, 75) (by [5, Lemma 7.3.1], for ex-
ample). Let ¢, : Co((0,1] x X) — M, ) and ¢y, : Co((0,1] x X) — M, () be the
maps corresponding to these extensions and quasicentral approximate units (as in
(3.2)). By possibly replacing (h%w))neN by a subsequence, we may assume that

rank(h%@)
rank(hslw)) - rank(hf:[i)l)

(3.13) 0.
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Define
(3.14) b = h® @ AP,

which forms an idempotent quasicentral approximate unit for 7Tyg.. Moreover, we
see that m, = m'? +m{” and (P @ Y)n = O B Yp. It follows from (3.13) that

(@)
m?L
i 0, and so

(315)  Jim s, (0B 9)al) = lim mar o, Walf) =700
for all f € Cy((0,1] x X). O

4. PROOF OF THE THEOREM

A piece of the completely positive approximations we will form come from par-
titions of unity for the quotient C'(X), based on a “coloured” open cover, as in the
following. The “colouring” idea is that we can assign to each set a colour from a
palette of size d + 1 (which we do formally using subscripts from 0 to d), so that
any two sets of the same colour are disjoint. In the following, we also introduce a
Borel cover compatible with the open sets corresponding to the first colour.

Lemma 4.1. Let X be a compact metric space of dimension d and let § > 0. Then
there exist a finite open cover {Uj@ :1=0,...,d;j=1,...,7(i)} and a finite Borel
cover {Y;:j=1,...,7(0)} of X such that:
(i) Each set U]@ and Y; has diameter at most 0;
(ii) For each i, the family {U;i) cj=1,...,7(4)} is pairwise disjoint, as is the
family {Y; :5=1,...,r(0)};
(iii) For each j, U;O) cY;.

Proof. The existence of the first partition of unity, {UJ@ i=0,...,d;5=1,...,5(i)}
is given by |21l Proposition 1.5, (i)=-(ii)]. Set 7(0) := s(0) + s(1) + - - - + s(d) and
set U;O) = () for j > s(0). Also set (i) := s(i) for i > 0. Define Vi,...,V, (o) to be

the sets Ul(o), cee, Us(?(;)’ cee Ul(d), e Us(fg) (in that order). Then define

(4.1) Y =i\ U Vi,

J'<j
for j =1,...,7(0). These are Borel, form a disjoint partition of unity, and satisfy
U;O) CYj for all j (in fact, for each j we either have equality or U ]@ =0). ([

We now have all the pieces required to prove our main theorem, which we restate
for the convenience of the reader.

Theorem A. Let X be a compact metrizable space and let E be an extension of
C(X) by K:

(4.2) 0->K—FE—CX)—0.
Then dimp,.F = dim(X).
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Proof of Theorem[4] Let d := dim(X); we will show dimu,.E < d (the converse
inequality follows from [31] Proposition 2.3(iv)], since the quotient C'(X') has nuclear
dimension d). If d = 0 then X is totally disconnected, and so F is a trivial extension
by [8, Theorem 1.15]. Consequently, there is a quasicentral approximate unit for
(K, E) consisting of projections, and so by [21, Proposition 6.2], dimy,.E < drTy =
dim(X) = 0. (Alternatively, one could make a direct argument that E is AF.)
Hence in what follows we may assume d > 0.

Let ¢ : C(X) — B(H) be a ucp map which is an injective *-homomorphism
modulo K, such that £ = Tj. Taking 79 to be any faithful trace on Cy((0,1] x
X), let Ty be the trivial extension and h = (hy,)nen the idempotent quasicentral
approximate unit for K in 744 obtained from Corollary [3.2] . (When we apply
Corollary- 7|later in the proof, we will make use of the fact that 7g is faithful.) Set
® := ¢ & ¢ and note that Tp = Ty since Ty, is a trivial extension (Theorem [1.3).
The rest of the proof will show that dimy,.(7s) < d.

Define h := (hn+1)nen to be the same approximate unit as h but with the index
shifted by 1. We may view both h and & as elements of (7)o (as defined below).
Define

43) Ay = haTohn, Ao = HAH/@A“
Bu = Uyt — hon) T (st — o), Bo = H By /EBB
Cr = (1= I 1) Ta (1 = ), B —HC /@Cm

(T#)oc ::HB/@B.

The algebras Ao, Boo, and Cy, give a sort of overlapping decomposition of (T )
Define corresponding cpc maps

(44) o :To = Aw, a(z) == (hizh?)nen
B8:C(X) = B, B(F) = ((hnsr — hin) 2 ®(F) (Bng1 — hn)? Jmen
7 :C(X) = Coo, ) = (1= by 1) 2R(F)(1 = hps1) ) nen.

Define t : To — (7)o to be the diagonal inclusion. Let t4 : Ao = (To)oco,
B Boo = (T3)oo, and t¢ : Coo = (Ta)oo be the inclusions coming from A, C T,
etc. Finally, define 7 : 7o — C(X) to be the quotient map.

Using that (h,)nen is a quasicentral approximate unit, we see that h, h commute
with 100 (73), and that for x € Tg,

/-\/\

(4.5) taoa(x) = his(z),
LBOﬁOﬂ'( ) (];’ ) ( )7
teoyom(z) = (1- B)LOO< )-

In particular, since the right-hand sides are all order zero functions of z, and since
LA, LB, e are injective while 7 is surjective, it follows that «, 3,y are each cpc order
zero maps. Also, it follows that

(4.6) too(@) =taoa(x)+igoPform(x)+tcoyonm(x).
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We will fill in the maps in the following diagram (a variant on diagram in the

proof of the Toeplitz case by Brake and Winter [0]), and its various paths will
together form our approximation:

| "
Coo —5 (Ta)
L

By the choice of (h,)nen in Corollary the cpc order zero map 3 satisfies

T(f(B)(g9)) = 70(f 0 g), for any f € Cy((0,1]) and any g € C(X). In particular,
since 79 is faithful on Co((0, 1] x X'), 3 satisfies the faithfulness condition in Corollary

and so it extends to an order zero function f : B(X) — Bo (recalling that
B(X) denotes the bounded Borel functions on X).

For each k, choose an open partition of unity {U,E’; :1=0,...,d,5=1,...,r(k,4)}
and a Borel partition of unity {Yj ; : j = 1,...,r(k, 0)} satisfying the conditions of
Lemma where the bound on the radius is a quantity 6 — 0. Using the open
cover, we shall define maps v, ¢ using the idea of the proof that dim,,.C(X) < d
(see [26] Proposition 2.19]).

For each i, 7, k, choose any :c in U,i; (orin Yy ; if ¢ = 0 and U,Ezg = ().
Also, select a partition of unlty (gl(€ i)l’j in C(X) subordinate to to the open cover

(UD);5- Define vy, = ()L : C(X) = CORO) @ .. CO D) by

(4.8) e () = (@) P )

(a *-homomorphism), <p§j) :COr(ki) 5 O(X) by

r(k,i)
(4.9) oA Z A

(a cpc order zero map), and py : C®(F0) — B(X) by

r(k,0
(4.10) peN”, A ) (Z) AN xvi,
(a *-homomorphism). Set
(4.11) O = Z(p CoOrR0) g ... g CO D O(X).
Then
(4.12) orotr(f) = f and proyl”(f) = f, feC(X)

(converging in norm, see the proof of [26, Proposition 2.19]).
In particular, for f € C(X),

(4.13) Boprowy(f) = B(f) = B
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Let us now show that
(4.14) (toBope+icoyopl): CEEO 5 (Ty),

is an order zero map, for all k. Since both p; and @20) are cpc order zero (and the
other components are *-homomorphisms), we only need to show that for j # j’,

(4.15) (tpo Bo pr(e;)) (Lcovo gp](go)(ej/)) =0,
where ey, ..., e.(,0) are the canonical basis elements of Cor(k.0),

Pick a sequence of functions (d,,)men supported on U,i ), such that dmg,C =

g,i - Since

(4.16) UL, € Vi © X\ Vi,

it follows that xy, ; <1 — dp, and thus

(4.17) les 0 Boprles) - tc ool (e

les (BOxvi,))ee (gl i)

< es(B = dn))ic(y(g0))I

= (7 = D)oo (D(1 = dn)) (1~ B)io (®(g} )| = 0.

The map (4.14)) is cp since it is the sum of cp maps, and it is contractive since

i
(%1

(4.18)up 0 Bopp +ic oo o) (lgerwn) < ta(Blax)) +e(r(lox)))
(h=h)+(1—h)=1-h<1.

Having established that the function (4.14)) is cpc order zero, we will now lift it;
this will form one of the upward maps in the definition of nuclear dimension. Using
order zero lifting ([2I, Remark 2.4]), we may lift the function (4.14) to a cpc order
ZEero map

(4.19) o) = (0)n : €O RO o TT 7o

neN
Likewise, we may lift each o <p cCorkd) [L, Cx to a cpc order zero map

(4.20) B = (@) C¥ S T c
neN

Write o, : T — A, for the map an(x) = hl/zgchl/2 and ta, : A, — To for the
inclusion. Note that 14, + <p( c A, @ Ce (k1) 5 T4 is cpe order zero, since it is
the sum of two cpc order zero maps with orthogonal ranges.

Altogether, we obtain an approximate factorization through C®7(%:0) g (4, ®
Ccortky g Cco k) @ ... @ CP (k49 given by the cpc maps
(4.21) O o Ty — CERO),

(an @M om) : T — (A, @ CERD),

Vom:To - C¥ED =2 d
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(where 7 : Tp — C(X) is the quotient map) together with the cpc order zero maps
(4.22) P CORO)
(a, + @,ﬁln) Ap @ CEED T
P i CORD) 0, C T, i=2,...,d.

Let us write Oy, ,, : To — To for the entire composition; that is,

(4.23) Ok (T) = an( +Z¢Sn W (n(x))).

We are done once we show that ©y , converges in point-norm to id-,.
Fixing k, by working in (7s)e0, and using the maps that the gég)n lift, we have

(4.24) limsup ||Ok n(z) — z||
n—oQ

d
= [lea(@(2)) + es(B o o) (r(x) + D e oy ool 0w o m(x))|

=0

= llaoa(@) +ipofopsopl”) om(w) +ic oy opr oy on()]

Thus,
(4.25) lim sup lim sup ||Oy , (z) — z||
k—oo n—oo
< limSUpHLAOOZ(CL')JFLBOBOpkOw]E:O)Oﬂ(x)
k—o0
+io 0y o pg o om(x)
112) [E13
‘ ' lea o a(z) +ipoBonm(x)+icoyom(x)
li 0,
as required. ([l
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