

Spectral gap characterizations of property (T) for II_1 Factors

Hui Tan

University of California, San Diego

COSy, 2022

Goal: characterization of Property (T) by spectral gaps in inclusions into tracial von Neumann algebras for separable II_1 factors.

Goal: characterization of Property (T) by spectral gaps in inclusions into tracial von Neumann algebras for separable II_1 factors.
(A question asked in [Goldbring, 2020])

von Neumann Algebra Basics

- A *tracial von Neumann algebra* is a von Neumann algebra M equipped with a normal (continuous with respect to the w.o. topology on the unit ball) faithful ($\tau(x^*x) = 0$ only if $x = 0$) tracial ($\tau(xy) = \tau(yx)$ for all $x, y \in M$) state (positive linear functional, $\tau(1) = 1$).

von Neumann Algebra Basics

- A *tracial von Neumann algebra* is a von Neumann algebra M equipped with a normal (continuous with respect to the w.o. topology on the unit ball) faithful ($\tau(x^*x) = 0$ only if $x = 0$) tracial ($\tau(xy) = \tau(yx)$ for all $x, y \in M$) state (positive linear functional, $\tau(1) = 1$).
- A *II_1 factor* is an infinite dimensional tracial von Neumann algebra with a trivial center.

Hilbert bimodules

- For two tracial von Neumann algebras (M, τ_M) and (N, τ_N) , a M - N -bimodule is a Hilbert space \mathcal{H} equipped with a normal unital homomorphism $\pi_l : M \rightarrow \mathcal{B}(\mathcal{H})$ and a normal unital anti-homomorphism $\pi_r : N \rightarrow \mathcal{B}(\mathcal{H})$ such that π_l and π_r commute.

Hilbert bimodules

- For two tracial von Neumann algebras (M, τ_M) and (N, τ_N) , a M - N -bimodule is a Hilbert space \mathcal{H} equipped with a normal unital homomorphism $\pi_l : M \rightarrow \mathcal{B}(\mathcal{H})$ and a normal unital anti-homomorphism $\pi_r : N \rightarrow \mathcal{B}(\mathcal{H})$ such that π_l and π_r commute.

Hilbert bimodules

- For two tracial von Neumann algebras (M, τ_M) and (N, τ_N) , a M - N -bimodule is a Hilbert space \mathcal{H} equipped with a normal unital homomorphism $\pi_l : M \rightarrow \mathcal{B}(\mathcal{H})$ and a normal unital anti-homomorphism $\pi_r : N \rightarrow \mathcal{B}(\mathcal{H})$ such that π_l and π_r commute.

Example

Given a tracial von Neumann algebra (M, τ_M) , let $L^2(M, \tau)$ be the completion of M with the inner product $\langle x, y \rangle = \tau(x^*y)$. Then $L^2(M, \tau)$ is an M - M -bimodule.

Hilbert bimodules

- For two tracial von Neumann algebras (M, τ_M) and (N, τ_N) , a M - N -bimodule is a Hilbert space \mathcal{H} equipped with a normal unital homomorphism $\pi_l : M \rightarrow \mathcal{B}(\mathcal{H})$ and a normal unital anti-homomorphism $\pi_r : N \rightarrow \mathcal{B}(\mathcal{H})$ such that π_l and π_r commute.

Example

Given a tracial von Neumann algebra (M, τ_M) , let $L^2(M, \tau)$ be the completion of M with the inner product $\langle x, y \rangle = \tau(x^*y)$. Then $L^2(M, \tau)$ is an M - M -bimodule.

Hilbert bimodules

- For two tracial von Neumann algebras (M, τ_M) and (N, τ_N) , a M - N -bimodule is a Hilbert space \mathcal{H} equipped with a normal unital homomorphism $\pi_l : M \rightarrow \mathcal{B}(\mathcal{H})$ and a normal unital anti-homomorphism $\pi_r : N \rightarrow \mathcal{B}(\mathcal{H})$ such that π_l and π_r commute.

Example

Given a tracial von Neumann algebra (M, τ_M) , let $L^2(M, \tau)$ be the completion of M with the inner product $\langle x, y \rangle = \tau(x^*y)$. Then $L^2(M, \tau)$ is an M - M -bimodule.

- For an M - N -bimodule ${}_M\mathcal{H}_N$ and an N - P -bimodule ${}_NK_P$, where M , N and P are three tracial von Neumann algebras, the *Connes fusion tensor product* $\mathcal{H} \otimes_N \mathcal{K}$ is a M - P -bimodule .

Kazhdan Property (T)

For groups

Let Γ be a discrete group. Then Γ has *Property (T)* ([Kazhdan, 1967]), if for any unitary representation (π, \mathcal{H}) of Γ with almost invariant unit vectors ξ_i 's:

$\xi_i \in \mathcal{H}$ such that $\|\pi(\gamma)\xi_i - \xi_i\| \rightarrow 0$ for every $\gamma \in \Gamma$,

π has a non-zero invariant vector.

Kazhdan Property (T)

For groups

Let Γ be a discrete group. Then Γ has *Property (T)* ([Kazhdan, 1967]), if for any unitary representation (π, \mathcal{H}) of Γ with almost invariant unit vectors ξ_i 's:

$\xi_i \in \mathcal{H}$ such that $\|\pi(\gamma)\xi_i - \xi_i\| \rightarrow 0$ for every $\gamma \in \Gamma$,

π has a non-zero invariant vector.

Examples

- Finite groups.

Kazhdan Property (T)

For groups

Let Γ be a discrete group. Then Γ has *Property (T)* ([Kazhdan, 1967]), if for any unitary representation (π, \mathcal{H}) of Γ with almost invariant unit vectors ξ_i 's:

$\xi_i \in \mathcal{H}$ such that $\|\pi(\gamma)\xi_i - \xi_i\| \rightarrow 0$ for every $\gamma \in \Gamma$,

π has a non-zero invariant vector.

Examples

- Finite groups.
- $SL_n(\mathbb{Z})$, $n \geq 3$.

Kazhdan Property (T)

For II_1 factors

A II_1 factor M has Property (T) ([Connes, 1982]), if for any M - M -bimodule \mathcal{H} with almost central unit vectors ξ_i 's,

$\xi_i \in \mathcal{H}$ such that $\|x\xi_i - \xi_i x\| \rightarrow 0$ for all $x \in M$,

\mathcal{H} has a non-zero M -central vector ($\eta \in \mathcal{H}$ such that $x\eta = \eta x$ for any $x \in M$).

Kazhdan Property (T)

For II_1 factors

A II_1 factor M has Property (T) ([Connes, 1982]), if for any M - M -bimodule \mathcal{H} with almost central unit vectors ξ_i 's,

$\xi_i \in \mathcal{H}$ such that $\|x\xi_i - \xi_i x\| \rightarrow 0$ for all $x \in M$,

\mathcal{H} has a non-zero M -central vector ($\eta \in \mathcal{H}$ such that $x\eta = \eta x$ for any $x \in M$).

- The group von Neumann algebra $L(\Gamma)$ has Property (T) iff Γ has Property (T).

Weak Spectral Gap

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

Weak Spectral Gap

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

- $A \subset M$ has *weak spectral gap* ([Popa, 2012]) if for every bounded net $(x_i)_i \in (M)_1$ with $\| [x, x_i] \|_2 \rightarrow 0$ for every $x \in A$,
$$\| x_i - E_{A' \cap M}(x_i) \|_2 \rightarrow 0,$$

Weak Spectral Gap

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

- $A \subset M$ has *weak spectral gap* ([Popa, 2012]) if for every bounded net $(x_i)_i \in (M)_1$ with $\| [x, x_i] \|_2 \rightarrow 0$ for every $x \in A$,
 $\| x_i - E_{A' \cap M}(x_i) \|_2 \rightarrow 0$, i.e. $A' \cap M^\omega = (A' \cap M)^\omega$.

Weak Spectral Gap

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

- $A \subset M$ has *weak spectral gap* ([Popa, 2012]) if for every bounded net $(x_i)_i \in (M)_1$ with $\| [x, x_i] \|_2 \rightarrow 0$ for every $x \in A$,
 $\| x_i - E_{A' \cap M}(x_i) \|_2 \rightarrow 0$, i.e. $A' \cap M^\omega = (A' \cap M)^\omega$.

(we always have the inclusion $A' \cap M^\omega \supseteq (A' \cap M)^\omega$)

Property (T) and Weak Spectral Gap

For a II_1 factor M :

- ① M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega$.

Property (T) and Weak Spectral Gap

For a II_1 factor M :

- ① M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega$.

We know 1 \Rightarrow 2.

Property (T) and Weak Spectral Gap

For a II_1 factor M :

- ① M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega$.

We know 1 \Rightarrow 2.

Question: 2 \Rightarrow 1?

Property (T) and Weak Spectral Gap

For a II_1 factor M :

- ① M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega$.

We know 1 \Rightarrow 2.

Question: 2 \Rightarrow 1?

Suppose an M - M -bimodule \mathcal{H} has almost central, unit vectors ξ_i but no non-zero central vectors. Construct from \mathcal{H} an inclusion $M \subseteq \tilde{M}$ such that $(M' \cap \tilde{M})^\omega \subsetneq M' \cap \tilde{M}^\omega$.

Shlyakhtenko's M -valued semicircular system construction ([Shlyakhtenko, 1999])

Shlyakhtenko's M -valued semicircular system construction ([Shlyakhtenko, 1999])

For a tracial von Neumann M and a symmetric M - M -bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, full Fock space of \mathcal{H} .

Shlyakhtenko's M -valued semicircular system construction ([Shlyakhtenko, 1999])

For a tracial von Neumann M and a symmetric M - M -bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.

Shlyakhtenko's M -valued semicircular system construction ([Shlyakhtenko, 1999])

For a tracial von Neumann M and a symmetric M - M -bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.
- For $\xi \in \mathcal{H}^0$, define the *left creation operator* $I(\xi) \in \mathcal{B}(\tilde{\mathcal{H}})$

$$I(\xi)(x) = \xi x \text{ for } x \in L^2(M),$$

$$I(\xi)(\xi_1 \otimes_M \cdots \otimes_M \xi_n) = \xi \otimes_M \xi_1 \otimes_M \cdots \otimes_M \xi_n.$$

Shlyakhtenko's M -valued semicircular system construction ([Shlyakhtenko, 1999])

For a tracial von Neumann M and a symmetric M - M -bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.
- For $\xi \in \mathcal{H}^0$, define the *left creation operator* $I(\xi) \in \mathcal{B}(\tilde{\mathcal{H}})$

$$I(\xi)(x) = \xi x \text{ for } x \in L^2(M),$$

$$I(\xi)(\xi_1 \otimes_M \cdots \otimes_M \xi_n) = \xi \otimes_M \xi_1 \otimes_M \cdots \otimes_M \xi_n.$$

- $\{s(\xi) | \xi \in \mathcal{H}^0, \xi = J(\xi)\}$ is the *M -valued semicircular system*, where $s(\xi) = I(\xi) + I(\xi)^*$.

Shlyakhtenko's M -valued semicircular system construction ([Shlyakhtenko, 1999])

For a tracial von Neumann M and a symmetric M - M -bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.
- For $\xi \in \mathcal{H}^0$, define the *left creation operator* $I(\xi) \in \mathcal{B}(\tilde{\mathcal{H}})$

$$I(\xi)(x) = \xi x \text{ for } x \in L^2(M),$$

$$I(\xi)(\xi_1 \otimes_M \cdots \otimes_M \xi_n) = \xi \otimes_M \xi_1 \otimes_M \cdots \otimes_M \xi_n.$$

- $\{s(\xi) | \xi \in \mathcal{H}^0, \xi = J(\xi)\}$ is the *M -valued semicircular system*, where $s(\xi) = I(\xi) + I(\xi)^*$.
- $\tilde{M} = M \vee \{s(\xi) | \xi \in \mathcal{H}^0, \xi = J(\xi)\}'' = M \vee \{s(\xi) | \xi \in \mathcal{H}^0\}''$
a tracial von Neumann algebra with $\tau_{\tilde{M}}(x) = \langle x 1_M, 1_M \rangle_{\tilde{\mathcal{H}}}$.

Shlyakhtenko's M -valued semicircular system construction ([Shlyakhtenko, 1999])

For a tracial von Neumann M and a symmetric M - M -bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.
- For $\xi \in \mathcal{H}^0$, define the *left creation operator* $I(\xi) \in \mathcal{B}(\tilde{\mathcal{H}})$

$$I(\xi)(x) = \xi x \text{ for } x \in L^2(M),$$

$$I(\xi)(\xi_1 \otimes_M \cdots \otimes_M \xi_n) = \xi \otimes_M \xi_1 \otimes_M \cdots \otimes_M \xi_n.$$

- $\{s(\xi) | \xi \in \mathcal{H}^0, \xi = J(\xi)\}$ is the *M -valued semicircular system*, where $s(\xi) = I(\xi) + I(\xi)^*$.
- $\tilde{M} = M \vee \{s(\xi) | \xi \in \mathcal{H}^0, \xi = J(\xi)\}'' = M \vee \{s(\xi) | \xi \in \mathcal{H}^0\}''$
a tracial von Neumann algebra with $\tau_{\tilde{M}}(x) = \langle x 1_M, 1_M \rangle_{\tilde{\mathcal{H}}}$.
- $\tilde{\mathcal{H}} \cong L^2(\tilde{M}, \tau_{\tilde{M}})$ as M - M -bimodules.

Weak Spectral gap in any inclusion implies Property (T)

From Shlyakhtenko's M -valued semicircular system construction,

Weak Spectral gap in any inclusion implies Property (T)

From Shlyakhtenko's M -valued semicircular system construction,
 $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, the full Fock space,
 $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

Weak Spectral gap in any inclusion implies Property (T)

From Shlyakhtenko's M -valued semicircular system construction,
 $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, the full Fock space,
 $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.

Weak Spectral gap in any inclusion implies Property (T)

From Shlyakhtenko's M -valued semicircular system construction,
 $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, the full Fock space,
 $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^\omega$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

Weak Spectral gap in any inclusion implies Property (T)

From Shlyakhtenko's M -valued semicircular system construction,
 $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, the full Fock space,
 $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^\omega$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

Weak Spectral gap in any inclusion implies Property (T)

From Shlyakhtenko's M -valued semicircular system construction, $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n}$, the full Fock space, $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^\omega$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

So 2 \Leftrightarrow 1.

Weak spectral gap only in irreducible inclusions

- ① M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega$.

Weak spectral gap only in irreducible inclusions

- ① M has Property (T);
- ③ for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega = \mathbb{C}1$.

Weak spectral gap only in irreducible inclusions

- ① M has Property (T);
- ③ for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega = \mathbb{C}1$.

In the proof of 2 \Rightarrow 1:

$$(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}}, \xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), (M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^\omega$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

Weak spectral gap only in irreducible inclusions

- ① M has Property (T);
- ③ for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega = \mathbb{C}1$.

In the proof of 2 \Rightarrow 1:

$(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}}$, $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$.

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^\omega$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

For 3 \Rightarrow 1,

- We need the above construction to satisfy $M' \cap \tilde{M} = \mathbb{C}1$.

Weak spectral gap only in irreducible inclusions

- ① M has Property (T);
- ③ for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega = \mathbb{C}1$.

In the proof of 2 \Rightarrow 1:

$$(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}}, \xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), (M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^\omega$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

For 3 \Rightarrow 1,

- We need the above construction to satisfy $M' \cap \tilde{M} = \mathbb{C}1$.
- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H} \otimes_M^n \cong L^2(\tilde{M})$.

Weak spectral gap only in irreducible inclusions

- ① M has Property (T);
- ③ for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega = \mathbb{C}1$.

In the proof of 2 \Rightarrow 1:

$$(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}}, \xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), (M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^\omega$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

For 3 \Rightarrow 1,

- We need the above construction to satisfy $M' \cap \tilde{M} = \mathbb{C}1$.
- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H} \otimes_M^n \cong L^2(\tilde{M})$.

Weak spectral gap only in irreducible inclusions

- ① M has Property (T);
- ③ for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega = \mathbb{C}1$.

In the proof of 2 \Rightarrow 1:

$$(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}}, \xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), (M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^\omega$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

For 3 \Rightarrow 1,

- We need the above construction to satisfy $M' \cap \tilde{M} = \mathbb{C}1$.
- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_M^n} \cong L^2(\tilde{M})$.

Extra step. We need \mathcal{H} to satisfy $\mathcal{H}^{\bigotimes_M^n}$ not to have non-zero central vectors as an M - M -bimodule, so that $M' \cap L^2(\tilde{M}) = \mathbb{C}1$.

Weak spectral gap only in irreducible inclusions

For $3 \Rightarrow 1$, we need to show:

Weak spectral gap only in irreducible inclusions

For 3 \Rightarrow 1, we need to show:

if M does not have Property (T) then we have an M - M -bimodule \mathcal{H} such that \mathcal{H} has almost central, unit vectors ξ_n and $\mathcal{H}^{\bigotimes_M^n}$ has no non-zero M -central vectors

Weak spectral gap only in irreducible inclusions

For 3 \Rightarrow 1, we need to show:

if M does not have Property (T) then we have an M - M -bimodule \mathcal{H} such that \mathcal{H} has almost central, unit vectors ξ_n and $\mathcal{H}^{\bigotimes_M^n}$ has no non-zero M -central vectors ($\iff \mathcal{H}$ being weakly mixing).

Weak spectral gap only in irreducible inclusions

For 3 \Rightarrow 1, we need to show:

if M does not have Property (T) then we have an M - M -bimodule \mathcal{H} such that \mathcal{H} has almost central, unit vectors ξ_n and $\mathcal{H}^{\otimes_M^n}$ has no non-zero M -central vectors ($\iff \mathcal{H}$ being weakly mixing).

Weak Mixing of Bimodules [Peterson and Sinclair, 2012]

The following are equivalent definitions for \mathcal{H} being a (left) weakly mixing M - M -bimodule:

Weak spectral gap only in irreducible inclusions

For 3 \Rightarrow 1, we need to show:

if M does not have Property (T) then we have an M - M -bimodule \mathcal{H} such that \mathcal{H} has almost central, unit vectors ξ_n and $\mathcal{H}^{\otimes_M^n}$ has no non-zero M -central vectors ($\iff \mathcal{H}$ being weakly mixing).

Weak Mixing of Bimodules [Peterson and Sinclair, 2012]

The following are equivalent definitions for \mathcal{H} being a (left) weakly mixing M - M -bimodule:

- ① the M - M -bimodule $\mathcal{H} \otimes \overline{\mathcal{H}}$ contains no non-zero central vector;
- ② \mathcal{H} has no non-zero right M -finite dimensional subbimodule;
- ③ there exists a sequence of unitaries $(u_n) \subset \mathcal{U}(M)$ such that $\lim_n \sup_{b \in (N)_1} |\langle u_n \xi b, \eta \rangle| = 0$ for any ξ and η in \mathcal{H} .

Characterization of Property (T) with non weak mixing

We need to show if M does not have Property (T) then there is an M - M -bimodule \mathcal{H} such that \mathcal{H} has almost central, unit vectors ξ_n and \mathcal{H} is weakly mixing.

Characterization of Property (T) with non weak mixing

We need to show if M does not have Property (T) then there is an M - M -bimodule \mathcal{H} such that \mathcal{H} has almost central, unit vectors ξ_n and \mathcal{H} is weakly mixing.

In the group case:

Theorem ([Bekka and Valette, 1993])

Let G be a group. Then the following are equivalent:

- ① G has Property (T);
- ② any unitary representation π of G on a Hilbert space which has almost invariant unit vectors has a non-zero finite dimensional subrepresentation.

Characterization of Property (T) with non weak mixing

Theorem ([Tan, 2022])

For a II_1 factor M , the following are equivalent:

- ① M has Property (T);
- ② for any M - M -bimodule \mathcal{H} with almost central unit vectors, \mathcal{H} has a subbimodule \mathcal{K} which is left or right finite M -dimensional (*not* both left and right weakly mixing);

Characterization of Property (T) with non weak mixing

Theorem ([Tan, 2022])

For a II_1 factor M , the following are equivalent:

- ① M has Property (T);
- ② for any M - M -bimodule \mathcal{H} with almost central unit vectors, \mathcal{H} has a subbimodule \mathcal{K} which is left or right finite M -dimensional (*not* both left and right weakly mixing);
- ③ any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega$;
- ④ for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^\omega = \mathbb{C}1$.

Characterization of Property (T) with non weak mixing

Theorem ([Tan, 2022])

For a II_1 factor M , the following are equivalent:

- ① M has Property (T);
- ② for any M - M -bimodule \mathcal{H} with almost central unit vectors, \mathcal{H} has a subbimodule \mathcal{K} which is left or right finite M -dimensional (*not* both left and right weakly mixing);
- ③ any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^\omega = (M' \cap \tilde{M})^\omega$;
- ④ for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^\omega = \mathbb{C}1$.

References I

[Bekka and Valette, 1993] Bekka, M. E. and Valette, A. (1993). Kazhdan's property (T) and amenable representations. *Mathematische Zeitschrift*, 212(1):293–299.

[Connes, 1982] Connes, A. (1982). Classification des facteurs. *Operator algebras and applications, Part 2, Proceedings of symposia in pure mathematics*, 38:43–109.

[Goldbring, 2020] Goldbring, I. (2020). On popa's factorial commutant embedding problem. *Proceedings of the American Mathematical Society*, 148(11):5007–5012.

[Kazhdan, 1967] Kazhdan, D. A. (1967). Connection of the dual space of a group with the structure of its close subgroups. *Functional analysis and its applications*, 1(1):63–65.

References II

[Peterson and Sinclair, 2012] Peterson, J. and Sinclair, T. (2012).
On cocycle superrigidity for gaussian actions.
Ergodic Theory and Dynamical Systems, 32(1):249–272.

[Popa, 2012] Popa, S. (2012).
On the classification of inductive limits of II_1 factors with spectral gap.
Transactions of the American Mathematical Society, 364(6):2987–3000.

[Shlyakhtenko, 1999] Shlyakhtenko, D. (1999).
A-valued semicircular systems.
Journal of functional analysis, 166(1):1–47.

[Tan, 2022] Tan, H. (2022).
Spectral gap characterizations of property (t) for ii_{-1} factors.
arXiv preprint arXiv:2202.06089.