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SECTION 1: ZERO-RANGE PROCESSES




RANDOM WALK: SINGLE PARTICLE

Particle is positioned at 0 and after waiting an exponential
amount of time it jumps one site to the left.

m Inter-jump time ~ Exp()\)

m Particle position at time t ~ Pois(\t)

m Expected position of the particle at time t = At

m Particle positions over time is a Poisson process (N(t))t>o




RANDOM WALK: MULTIPLE PARTICLES

Several particles are positioned at sites of the one-dimensional
lattice. Independently, each waits an exponential amount of time
and then jumps one site to the left.
m Particle distribution at time o is a product of Poisson
distributions
m Inter-jump time ~ Exp(\)
m Particle distribution at time t is a product of Poisson
distributions




Define the configuration n = (7(x))xez, Where n(x) is the number
of particles at site x.

(L)) =D nx)(F() = f(n))
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TAZRP: TOTALLY ASYMMETRIC ZERO-RANGE PROCESS

A Markov jump process with generator

(L)) =D gm(x))(F () — ()

XEZ

m totally: jumps occur only to the left

m asymmetric: jumps to the left are more likely to occur than
jumps to the right

m zero-range: jJump rate depends on the departure occupancy,
only

mg:{0,1,2,...} —» R, bounded, non-decreasing function
with g(0) =0




TAZRP: INVARIANT MEASURES

Invariant measures that are translation-invariant and product
measures

m )\ is selected so that the expected value of v” is p
m Z()\) is a normalizing constant




TAZRP: Q-BOSON

TAZRP with g(n) = [n] = =2
= q-BOSON of Sasamoto and Wadati’
= g-TAZRP of Borodin and Corwin 2

'Sasamoto T, Wadati M, Exact results for one-dimensional totaly asymmetric
diffusion models, ). Phys. A 31 (1998) 6057-6071

2Borodin A, Corwin I, Macdonald Processes, Probab Theor Rel Fields 158
(2014) 225-400
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MODEL HIERARCHY

TAZRP
BOSON/BLOCK

Algebra

Analysis Analysis
Approximation Approximation
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SECTION 2: ALGEBRAIC PROPERTIES




DEFORMED AFFINE HECKE ALGEBRA OF TYPE Ag_,

Generators
T's:Ti,...,Teer and X'S:Xp,... Xe, Xo oo Xy !
Eigenvalue relations
(Ti—1)(Ti+qg)=0, i=1,...,k
Braid relations
TiTnTi =T TiTipe, i=1,...,k
T =TT, li—jl>1
Laurent relations
XiX; = XXi, XX'=X"X, ij=1,...,k
Simple action relations
TXTi=qXi, i=1,....,kR—1
TXi=XT i#j,j—1
Deformed action relations
XigaTi — TXi = TiXipa — TiXi = (@ + BX)(y + 0Xip) i=1,...,R—1
TX =XT;, i#j,j—1




Generators and relations of Hecke algebras

type A,_, affine deformed 3

Parameters q q &, 5,76
g=1+py—ad

Generators T's T's, X's T's, X's

Eigenvalue v v v

Braid v v v

Laurent v v

Action simple deformed

3Takeyama Y, A deformation of affine Hecke algebra and integrable
stochastic particle systems, J. Phys. A 47(46) (2014)



THE MODEL OF TAKEYAMA: Q-BLOCK




TAKEYAMA'S HAMILTONIAN

s e foo[d]]
(Oé7 » Vs )_ _a7§1+ﬁ’y[df]

R

+2(=B)~"Ir — aliqlrr="2
r=1
d+.-+d~
g h ir 5}-1 e
X r X .. X
2 p_o(1+ Byld +d —p))

1<j1<<jr<k

When (a + 8)(y+d) = 0, H(a, 8,7, 0) is the generator of a Markov
jump process. The dynamics involve movement to the left of
more than one particle from one site to the neighboring site.



TAZRP: THE MODEL OF TAKEYAMA (Q-BLOCK)

J particles move to the left from a cluster with a particles at

j—1 17 _
rate = r(a,j) = > la—pl

] p:o1+s[a—1—p]

m forr =1, rate =r(a,1) = %
—1
m forr =2, rate =r(a,2) = (1+q)(1+zEz]f[(:])(]1+S[G*2])
Limiting cases:

B S=0,0<q<1q-BOSON of Sasamoto and Wadati* >
B s =0,q =1, Independent Random Walks.

“Sasamoto T, Wadati M, Exact results for one-dimensional totaly asymmetric

diffusion models, J. Phys. A 31 (1998) 6057-6071

Svan Diejen JF, Emsiz E, Diagonalization of the infinite q-boson system, )
Functional Analysis 266 (2014) 5801-5817



PROPERTIES OF TAKEYAMA'S HAMILTONIAN

Theorem (Takeyama, 2014)

H(am@a’y,é)GX — GX(X1 + tT "‘Xn) = GXA1/2




Proposition

Define Y; = X,:1,forl_1 ,kRandS; =T, ;fori=1,...,kR—1.

Then S’s and Y’s satisfies the all relations of the deformed affine
Hecke algebra with parameters 4, , 3, «

Xt (X Ty = TXOXT = TXT = X2 T = (644X ) (B + X7

X7 (TiXipa = XX, = X7 = TX = (8 +9X0) (B + aX )




Consequence

m H(S,7,8,a)Gy = Gy(Yr+ -+ Yn)

=Gy(Xy '+ X)) =G A ),
u (H(O[, ﬁv ’75 5) + H((s’ 77 Bv a))G

=GXi4- + X+ X7+ + X)) =GA

H(«, 8,7,8) + H(4,~, 3, «) encodes particle movement to both
left and right (AZRP).



Consequence: Eigenvectors of the Hamiltonian can be
constructed from the eigenvectors of the Laplacian. The
Laplacian’s eigenvectors are calculated via Bethe Ansatz.
Knowledge of these eigenvectors help calculate transition
probabilities.

For q-BOSON transition probabilities can be calculated © 7

®Borodin A, Corwin I, Petrov L, and Sasamoto T, SPECTRAL THEORY for the
gq-BOSON PARTICLE SYSTEM

"Korhonen M and Lee E, The transition probability and the probability for
the left-most particle’s position of the q-TAZRP




SECTION 3: ANALYTIC/ASYMPTOTIC
PROPERTIES




HYDRODYNAMIC SCALING LIMIT

Microscopic
empirical distribution of particles Macroscopic profile
. _ N - o .
at time t=0 at time t=0
1 .
PO =5 ) 6w £o()
XeEZ
Quasilinear PDE
Hamiltonian a.p—8.(J(p)=0
Generator of Markov p(0,x) = po(x)
jump process
Microscopic N = o Macroscopic profile
empirical distribution of particles attime t
attimet p(t,s)
1
PO =5 D S
X€Z



TAZRP: HYDRODYNAMIC SCALING LIMIT

Theorem (Rezakhanlou® , 1991)

TAZRP has a hydrodynamic scaling limit given by the solution of
the quasi-linear hyperbolic equation of first order

Op = 0x(J(p))

p(0,X) = po(X)

where J(p) = E,»[g] is the expected microscopic current through a
site

8Rezakhanlou F, Hydrodynamic Limit for Attractive Particle Systems on Z¢,
Commun. Math. Phys. 140, 417-448 (1991)




TAZRP: HYDRODYNAMIC SCALING LIMIT

- . e b x<o
Initial particle distribution p(0,x) = { G oSG
Independent Random Walks g-Boson
1
9(p) — 9x(p) =0 9(p) — Wax(f)) =0
p(t,x) = Ay =
{ b x< _t b x < —f(t,b)
(/5 -0 f(tb) <x < —f(ta)
a x=t ! a x > —f(t,a)




TAZRP: HYDRODYNAMIC SCALING LIMIT

INDEPENDENT RANDOM WALKS Q-BOSON




Q-BLOCK: ATTRACTIVENESS

Proposition (Savu)

For s < g, the g-BLOCK is attractive

slb+1] =s(1+q+---+q°) = s(1+q[b]) < g +sq[b] = q(1+ s[b])

=
) ) []] s[a + R] s[a + 1]
r(a+Rk,j+k) =r(a,j) x TR 1tslatrk—1 " “1fs[q
< r{aj} X U"i“,l] < r(aj)




Q-BLOCK: ATTRACTIVENESS

a+k

a+j
a
! a— ja j ! a—j

r(a+ klk +7)  rla+ ka -j)  r(aj ~|r(a +kk+])

j=1,,a j=1,-k j=1,-,a



Q-BLOCK: HYDRODYNAMIC SCALING LImIT

Theorem (in progress)

For s < g, the g-BLOCK has a hydrodynamic scaling limit given by
the solution of the quasi-linear hyperbolic equation of first order

Op = 0x(J(p))

p(0,X) = po(X)

where J(p) = E,»(da) [Zfﬂjr(a,j)} is the expected microscopic
current through a site.



Q-BLOCK: KOLMOGOROV FORWARD EQUATION 2P

dp
T;(yax):Pt(y+1vx)+Pt(y7X+1)*2Pt(yax)a y>X+2

ngt(xﬂ” X) = Pe(X + 2,X) 4+ UPt(x +1,x + 1) — 2P¢(x + 1,x)
dpP
dtt(X X) = Pe(X 4+ 1,X) + VPt(X + 1,x + 1) — (U + V)Py(X, X)
_ _1+q9 _ B
u=r(2,1) =g =(+a)01-)
S
v=r(2, )_m_




Q-BLOCK: KOLMOGOROV FORWARD EQUATION 2P

Let Py be the solution

dpo

dt (yax) :P?(y+1,X)+P?(y,X+1)—2P?(y,X), Y.XEZL

satisfying the boundary condition
P2(x,x+1) = (U—1)P2(x+1,X)+VP?(Xx+1,x+1) — (U+v—2)PP(x, X)
Then P; satisfies KF equation for 2 particles

_ [ Py.x), for y=x+1
Pt(y,x)_{ 1po(x,x), for y=x

Weighting — RED EQ.
Weighting + Boundary Condition — BLUE EQ.




Q-BLOCK: KOLMOGOROV FORWARD EQUATION 3P

dt PL(2,Y,X) =P (Z4+1,Y X)+P(ZY+H1X)+P(ZY X+1)—=3Pe(ZY,X),  Z>Yy+2>X+4
dPt £ (Z.X41,X)=Pt(Z-1,X+1,X) +Pt (Z,X+2,X+1) +17 Pt(Z, X+1,X+1) =3Pt(Z,x+1,X),  2>X+3

(X+1xy) Pe(x42,%,y) 413 Pt (X4+1,X+1,y ) Pt (X+1,6,y+1) =3Pt (X+1,X,y),  Xx>y+2

P
dt

(

(

(
(x+1xx 1) =Pt (X+2,X,X—1)+r2P(X+1,X+1,X—1)+12 Pt (X+1,X,X) =3Pt (X+1,X,Xx—1)

dt (zxx) Pt(z41,%,X)+Pt (2, X+1,X) + 12 Pt (2, X+1,X+1)— (1412412 )Pe(2,X,X),  Z>X+2

B (X, XY ) =Pt (X-+H1,X,Y) + 2P (XHTX 1Y) +Pe X Y1) — (12 42)Pe (X XY),  X>Y+2
X+1,%,X) =Pt (X+2,X,X) +r2 Pe (X-+1,X-+1,X) + 3 P (X+1,X+1,X+1) — (141212 ) P (X+1,X,X)
XX, X—1)=Pt (X+1,X,X—1)+r2Pe(X+1,X+1,X—1)+r3P¢ (X,X,X) — (14-r2+r2) Pt (X,X,x—1)

L (XX, X) =Pt (X+1,X,X) 472 Pt (X+1,X+1,X) +r3 Pt (X+1,X+1,X+1) — (13 +r3 413 ) Pt (X,X,X)




Q-BLOCK: KOLMOGOROV FORWARD EQUATION 3P

Let Py be the solution
%(z,y7X):P?(Z+1,y,X)+P?(z7y+17X)+P?(z,y,X+1)—3P?(z7y7><)7 zyXeZ
satisfying the boundary condition

PP (x.x+1,y) =(r; —1)P(X-+1,X,Y)+13P (X+1.X+1,y)+(2—r3 +r3)PP (X, x,y)  x+1>y

PP(z,x,x+1) =(r; —1)PP(z.x+1,X)+r3P2 (2 X+1,X+1)+(2—r3 +r3)PP (2, x,x)  z>Xx+1
Then P; satisfies KF equation for 3 particles

PP(z.y.x), for z>y+1>x+2
r(;J)P?(z, Y, X), for z=y>x+1o0r
Z—-1>y=X

P(z,y.x), for x=y=z

Pi(z,y,x) =

1
r(2,1)r(3,1)




Q-BLOCK: KOLMOGOROV FORWARD EQUATION 3P

under the constraints on the transition rates
r(2,1)(r(2,1)—1)

1—r(2,2)(2—r(2,1)—r(2,2))

Constrain1 r(3,1) = 1+

Constrain2 r(3,2) = r(3,1)r(2,1)
. - r(2,1)r(2,2)?
Constrain 3 I’(3.3) = 1-r(2,2)(2—r(2,1)—r(2,2))

Weighting — RED EQ.

Weighting + Boundary Condition — BLUE EQ.

Weighting + Boundary Condition + Constrain 2 — GREEN EQ.
Weighting + Boundary Condition + Constrains 2 + Constrains 1, 3
— ORANGE EQ.
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