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Section 1: Zero-range processes



Random Walk: single particle

Particle is positioned at 0 and after waiting an exponential
amount of time it jumps one site to the left.

Inter-jump time ∼ Exp(λ)
Particle position at time t ∼ Pois(λt)
Expected position of the particle at time t = λt
Particle positions over time is a Poisson process (N(t))t≥0
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Random Walk: multiple particles

Several particles are positioned at sites of the one-dimensional
lattice. Independently, each waits an exponential amount of time
and then jumps one site to the left.

Particle distribution at time 0 is a product of Poisson
distributions
Inter-jump time ∼ Exp(λ)
Particle distribution at time t is a product of Poisson
distributions
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Define the configuration η = (η(x))x∈Z, where η(x) is the number
of particles at site x.

(Lf )(η) =
∑
x∈Z

η(x)(f (ηx,−)− f (η))
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TAZRP: Totally asymmetric zero-range process

A Markov jump process with generator

(Lf )(η) =
∑
x∈Z

g(η(x))(f (ηx,−)− f (η))

totally: jumps occur only to the left
asymmetric: jumps to the left are more likely to occur than
jumps to the right
zero-range: jump rate depends on the departure occupancy,
only
g : {0, 1, 2, . . . } → R+ bounded, non-decreasing function
with g(0) = 0
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TAZRP: Invariant measures

Invariant measures that are translation-invariant and product
measures

νρ(k) = 1
Z(λ)

λk

g(0)g(1)...g(k)

λ is selected so that the expected value of νρ is ρ

Z(λ) is a normalizing constant
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TAZRP: q-BOSON

TAZRP with g(n) = [n] = 1−qn
1−q

= q-BOSON of Sasamoto and Wadati1
= q-TAZRP of Borodin and Corwin 2

1Sasamoto T, Wadati M, Exact results for one-dimensional totaly asymmetric
diffusion models, J. Phys. A 31 (1998) 6057-6071

2Borodin A, Corwin I, Macdonald Processes, Probab Theor Rel Fields 158
(2014) 225-400
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MODEL HIERARCHY
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Section 2: Algebraic properties



Deformed affine Hecke algebra of type Ak−1

Generators
T′s : T1, . . . , Tk−1 and X′s : X1, . . . , Xk, X−1

1 , . . . X−1
k

Eigenvalue relations
(Ti − 1)(Ti + q) = 0, i = 1, . . . , k

Braid relations
TiTi+1Ti = Ti+1TiTi+1, i = 1, . . . , k

TiTj = TjTi, |i− j| > 1
Laurent relations

XiXj = XjXi, XiX−1
i = X−1

i Xi, i, j = 1, . . . , k
Simple action relations

TiXiTi = qXi+1 i = 1, . . . , k− 1
TiXj = XjTi i ̸= j, j− 1

Deformed action relations
Xi+1Ti − TiXi = TiXi+1 − TiXi = (α+ βXi)(γ + δXi+1) i = 1, . . . , k− 1

TiXj = XjTi i ̸= j, j− 1
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Generators and relations of Hecke algebras

type Ak−1 affine deformed 3

Parameters q q α, β, γ, δ
q = 1 + βγ − αδ

Generators T′s T′s, X′s T′s, X′s

Eigenvalue ✓ ✓ ✓

Braid ✓ ✓ ✓

Laurent ✓ ✓

Action simple deformed

3Takeyama Y, A deformation of affine Hecke algebra and integrable
stochastic particle systems, J. Phys. A 47(46) (2014)
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The model of Takeyama: q-BLOCK
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Takeyama’s Hamiltonian

H(α, β, γ, δ) = −αγ

k∑
j=1

[d+j ]
1 + βγ[d+j ]

+
k∑
r=1

(−βγ)r−1[r − 1]!q(r(r−1)/2)

×
∑

1≤j1<···<jr≤k

qd
−
j1
+···+d−jr δj1,...,jr∏r−1

p=0(1 + βγ[d+j1 + d−j1 − p])
Xj1 ...Xjr

When (α+ β)(γ + δ) = 0, H(α, β, γ, δ) is the generator of a Markov
jump process. The dynamics involve movement to the left of
more than one particle from one site to the neighboring site.
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TAZRP: The model of Takeyama (q-BLOCK)

j particles move to the left from a cluster with a particles at

rate = r(a, j) = sj−1

[j]

j−1∏
p=0

[a− p]
1 + s[a− 1 − p]

for r = 1, rate = r(a, 1) = [a]
1+s[a−1]

for r = 2, rate = r(a, 2) = s[a][a−1]
(1+q)(1+s[a−1])(1+s[a−2])

Limiting cases:
s = 0, 0 < q < 1, q-BOSON of Sasamoto and Wadati4 5

s = 0, q = 1, Independent Random Walks.
4Sasamoto T, Wadati M, Exact results for one-dimensional totaly asymmetric

diffusion models, J. Phys. A 31 (1998) 6057-6071
5van Diejen JF, Emsiz E, Diagonalization of the infinite q-boson system, J

Functional Analysis 266 (2014) 5801-5817
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Properties of Takeyama’s Hamiltonian

Theorem (Takeyama, 2014)

H(α, β, γ, δ)Gx = Gx(X1 + · · ·+ Xn) = Gx∆1/2
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Proposition
Define Yi = X−1

k+1−i for i = 1, . . . , k and Si = Tk−i for i = 1, . . . , k− 1.
Then S′s and Y′s satisfies the all relations of the deformed affine
Hecke algebra with parameters δ, γ, β, α.

X−1
i+1(Xi+1Ti − TiXi)X−1

i = TiX−1
i − X−1

i+1Ti = (δ + γX−1
i+1)(β + αX−1

i )

X−1
i (TiXi+1 − XiTi)X−1

i+1 = X−1
i Ti − TiX−1

i+1 = (δ + γX−1
i+1)(β + αX−1

i )
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Consequence

H(δ, γ, β, α)Gy = Gy(Y1 + · · ·+ Yn)

= Gy(X−1
n + · · ·+ X−1

1 ) = Gy∆−1/2

(H(α, β, γ, δ) + H(δ, γ, β, α))G

= G(X1 + · · ·+ Xn + X−1
1 + · · ·+ X−1

n ) = G∆

H(α, β, γ, δ) + H(δ, γ, β, α) encodes particle movement to both
left and right (AZRP).
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Consequence: Eigenvectors of the Hamiltonian can be
constructed from the eigenvectors of the Laplacian. The
Laplacian’s eigenvectors are calculated via Bethe Ansatz.
Knowledge of these eigenvectors help calculate transition
probabilities.
For q-BOSON transition probabilities can be calculated 6 7

6Borodin A, Corwin I, Petrov L, and Sasamoto T, SPECTRAL THEORY for the
q-BOSON PARTICLE SYSTEM

7Korhonen M and Lee E, The transition probability and the probability for
the left-most particle’s position of the q-TAZRP
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Section 3: Analytic/Asymptotic
properties



Hydrodynamic Scaling Limit
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TAZRP: Hydrodynamic Scaling Limit

Theorem (Rezakhanlou8 , 1991)
TAZRP has a hydrodynamic scaling limit given by the solution of
the quasi-linear hyperbolic equation of first order

∂tρ = ∂x(J(ρ))

ρ(0, x) = ρ0(x)

where J(ρ) = Eνρ [g] is the expected microscopic current through a
site

8Rezakhanlou F, Hydrodynamic Limit for Attractive Particle Systems on Zd,
Commun. Math. Phys. 140, 417-448 (1991)
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TAZRP: Hydrodynamic Scaling Limit

Initial particle distribution ρ(0, x) =
{
b x < 0
a x ≥ 0

Independent Random Walks

∂t(ρ)− ∂x(ρ) = 0

ρ(t, x) ={
b x < −t
a x ≥ t

q-Boson

∂t(ρ)−
1

(1 + (1 − q)ρ)2∂x(ρ) = 0

ρ(t, x) =
b x < −f (t, b)

1
1−q (

√
t

−x − 1) −f(t, b) ≤ x < −f (t, a)
a x ≥ −f (t, a)
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TAZRP: Hydrodynamic Scaling Limit
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q-BLOCK: Attractiveness

Proposition (Savu)
For s ≤ q, the q-BLOCK is attractive

s[b+ 1] = s(1+ q+ · · ·+ qb) = s(1+ q[b]) ≤ q+ sq[b] = q(1+ s[b])

⇒

r(a+ k, j+ k) = r(a, j)× [j]
[j+ k] ×

s[a+ k]
1 + s[a+ k− 1] × · · · × s[a+ 1]

1 + s[a]

≤ r(a, j)× qk[j]
[j+ k] ≤ r(a, j)
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q-BLOCK: Attractiveness
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q-BLOCK: Hydrodynamic Scaling Limit

Theorem (in progress)
For s ≤ q, the q-BLOCK has a hydrodynamic scaling limit given by
the solution of the quasi-linear hyperbolic equation of first order

∂tρ = ∂x(J(ρ))

ρ(0, x) = ρ0(x)

where J(ρ) = Eνρ(da)
[∑a

j=1 jr(a, j)
]

is the expected microscopic
current through a site.
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q-BLOCK: Kolmogorov Forward Equation 2p

dPt
dt (y, x) = Pt(y + 1, x) + Pt(y, x + 1)− 2Pt(y, x), y≥x+2

dPt
dt (x + 1, x) = Pt(x + 2, x) + uPt(x + 1, x + 1)− 2Pt(x + 1, x)

dPt
dt (x, x) = Pt(x + 1, x) + vPt(x + 1, x + 1)− (u+ v)Pt(x, x)

u = r(2, 1) = 1 + q
1 + s = (1 + q)(1 − λ)

v = r(2, 2) = s
1 + s = λ
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q-BLOCK: Kolmogorov Forward Equation 2p

Let P0 be the solution

dP0
t

dt (y, x) = P0
t (y + 1, x) + P0

t (y, x + 1)− 2P0
t (y, x), y,x∈Z

satisfying the boundary condition

P0
t (x, x+1) = (u−1)P0

t (x+1, x)+vP0
t (x+1, x+1)−(u+v−2)P0

t (x, x)

Then Pt satisfies KF equation for 2 particles

Pt(y, x) =
{

P0
t (y, x), for y ≥ x + 1

1
uP

0
t (x, x), for y = x

Weighting → RED EQ.
Weighting + Boundary Condition → BLUE EQ.
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q-BLOCK: Kolmogorov Forward Equation 3p

dPt
dt (z,y,x)=Pt(z+1,y,x)+Pt(z,y+1,x)+Pt(z,y,x+1)−3Pt(z,y,x), z≥y+2≥x+4

dPt
dt (z,x+1,x)=Pt(z+1,x+1,x)+Pt(z,x+2,x+1)+r21Pt(z,x+1,x+1)−3Pt(z,x+1,x), z≥x+3
dPt
dt (x+1,x,y)=Pt(x+2,x,y)+r21Pt(x+1,x+1,y)+Pt(x+1,x,y+1)−3Pt(x+1,x,y), x≥y+2

dPt
dt (x+1,x,x−1)=Pt(x+2,x,x−1)+r21Pt(x+1,x+1,x−1)+r21Pt(x+1,x,x)−3Pt(x+1,x,x−1)

dPt
dt (z,x,x)=Pt(z+1,x,x)+Pt(z,x+1,x)+r22Pt(z,x+1,x+1)−(1+r21+r22)Pt(z,x,x), z≥x+2
dPt
dt (x,x,y)=Pt(x+1,x,y)+r22Pt(x+1,x+1,y)+Pt(x,x,y+1)−(1+r21+r22)Pt(x,x,y), x≥y+2

dPt
dt (x+1,x,x)=Pt(x+2,x,x)+r21Pt(x+1,x+1,x)+r32Pt(x+1,x+1,x+1)−(1+r21+r22)Pt(x+1,x,x)
dPt
dt (x,x,x−1)=Pt(x+1,x,x−1)+r22Pt(x+1,x+1,x−1)+r31Pt(x,x,x)−(1+r21+r22)Pt(x,x,x−1)

dPt
dt (x,x,x)=Pt(x+1,x,x)+r22Pt(x+1,x+1,x)+r33Pt(x+1,x+1,x+1)−(r31+r32+r33)Pt(x,x,x)
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q-BLOCK: Kolmogorov Forward Equation 3p

Let P0 be the solution

dP0
t

dt (z,y,x)=P0
t (z+1,y,x)+P0

t (z,y+1,x)+P0
t (z,y,x+1)−3P0

t (z,y,x), z,y,x∈Z

satisfying the boundary condition

P0
t (x,x+1,y) =(r21−1)P0

t (x+1,x,y)+r22P0
t (x+1,x+1,y)+(2−r21+r22)P0

t (x,x,y) x+1≥y

P0
t (z,x,x+1) =(r21−1)P0

t (z,x+1,x)+r22P0
t (z,x+1,x+1)+(2−r21+r22)P0

t (z,x,x) z≥x+1

Then Pt satisfies KF equation for 3 particles

Pt(z, y, x) =


P0
t (z, y, x), for z ≥ y + 1 ≥ x + 2

1
r(2,1)P

0
t (z, y, x), for z = y ≥ x + 1 or

z− 1 ≥ y = x
1

r(2,1)r(3,1)P
0
t (z, y, x), for x = y = z
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q-BLOCK: Kolmogorov Forward Equation 3p

under the constraints on the transition rates

Constrain 1 r(3, 1) = 1 + r(2,1)(r(2,1)−1)
1−r(2,2)(2−r(2,1)−r(2,2))

Constrain 2 r(3, 2) = r(3, 1)r(2, 1)
Constrain 3 r(3, 3) = r(2,1)r(2,2)2

1−r(2,2)(2−r(2,1)−r(2,2))

Weighting → RED EQ.
Weighting + Boundary Condition → BLUE EQ.
Weighting + Boundary Condition + Constrain 2 → GREEN EQ.
Weighting + Boundary Condition + Constrains 2 + Constrains 1, 3
→ ORANGE EQ.
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