

Irreducible inclusions of simple C^* -algebras

Mikael Rørdam
University of Copenhagen

Canadian Operator Algebras Symposium
June 2, 2022

Outline

- 1 C^* -irreducible inclusions
- 2 von Neumann algebras
- 3 Inductive limits and tensor products
- 4 Inclusions arising from groups and dynamics
- 5 Bisch–Haagerup type inclusions

Definition: A unital inclusion $\mathcal{B} \subseteq \mathcal{A}$ of unital (simple) C^* -algebra is C^* -irreducible if all intermediate C^* -algebras $\mathcal{B} \subseteq \mathcal{D} \subseteq \mathcal{A}$ are simple.

Example [Kishimoto, Olesen–Pedersen]: Let $\Gamma \curvearrowright \mathcal{B}$ be an outer action of a discrete group Γ on a unital simple C^* -algebra \mathcal{B} .

Then $\mathcal{B} \subseteq \mathcal{B} \rtimes_{\text{red}} \Gamma$ is C^* -irreducible.

von Neumann analogy: For an inclusion $\mathcal{N} \subseteq \mathcal{M}$ of vNAlg TFAE:

- ① $\mathcal{N}' \cap \mathcal{M} = \mathbb{C}$,
- ② all intermediate von Neumann algs $\mathcal{N} \subseteq \mathcal{P} \subseteq \mathcal{M}$ are factors,
- ③ $\bigvee_{u \in \mathcal{U}(\mathcal{N})} upu^* = 1$, for all non-zero projections $p \in \mathcal{M}$.

Goals:

- Give intrinsic characterization of C^* -irreducible inclusions.
- Provide (further) examples and derive properties of C^* -irreducible inclusions.
- Rigidity: classify intermediate C^* -algebras of an C^* -irreducible inclusions.

Full elements: \mathcal{A} = unital C^* -alg and $a \in \mathcal{A}^+$. Then a is full in \mathcal{A} (i.e., not contained in any proper two-sided ideal) iff $\exists x_1, \dots, x_n \in \mathcal{A}$ st $\sum_{j=1}^n x_j^* a x_j \geq 1_{\mathcal{A}}$.

Lemma: \mathcal{A} = unital C^* -alg, $\mathcal{W} \subseteq \mathcal{A}$, and $a \in \mathcal{A}^+$.

$$\begin{aligned} \exists x_1, \dots, x_n \in \overline{\text{span}(\mathcal{W})} \text{ st } \sum_{j=1}^n x_j^* a x_j \geq 1_{\mathcal{A}} \\ \implies \exists w_1, \dots, w_m \in \mathcal{W} \text{ st } \sum_{j=1}^m w_j^* a w_j \geq 1_{\mathcal{A}}. \end{aligned}$$

Def./Lemma: Given unital inclusion $\mathcal{B} \subseteq \mathcal{A}$ of C^* -algs, and $a \in \mathcal{A}^+$.
 a is full relatively to \mathcal{B} if one of the following equivalent conditions hold:

- $\exists x_1, \dots, x_n \in \mathcal{B}$ st $\sum_{j=1}^n x_j^* a x_j \geq 1_{\mathcal{A}}$.
- $\exists x_1, \dots, x_n \in \mathcal{B}$ st $\sum_{j=1}^n x_j^* a x_j$ invertible,
- $\exists u_1, \dots, u_m \in \mathcal{U}(\mathcal{B})$ st $\sum_{j=1}^m u_j^* a u_j \geq 1_{\mathcal{A}}$.

Proposition: Given unital inclusion $\mathcal{B} \subseteq \mathcal{A}$ of C^* -algs, and $a \in \mathcal{A}^+$.
Then: a is full relatively to $\mathcal{B} \iff a$ is full in $C^*(\mathcal{B}, a)$.

Proposition: Given unital inclusion $\mathcal{B} \subseteq \mathcal{A}$ of C^* -algs, and $a \in \mathcal{A}^+$. Then: a is full relatively to $\mathcal{B} \iff a$ is full in $C^*(\mathcal{B}, a)$.

Proof: Apply the lemma to $\mathcal{W} = \{b_1 a b_2 a \cdots a b_n : n \geq 1, b_j \in \mathcal{B}\}$.

Theorem: A unital inclusion $\mathcal{B} \subseteq \mathcal{A}$ of C^* -algebras is C^* -irreducible (all intermediate C^* -algs are simple) iff each non-zero $a \in \mathcal{A}^+$ is full rel. to \mathcal{B} .

Proof: “only if”. Let $a \in \mathcal{A}^+$ be non-zero. Then $\mathcal{B} \subseteq C^*(\mathcal{B}, a) \subseteq \mathcal{A}$, and $C^*(\mathcal{B}, a)$ simple $\Rightarrow a$ full in $C^*(\mathcal{B}, a) \Leftrightarrow a$ full relatively to \mathcal{B} .

Fact: $\mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible $\Rightarrow \mathcal{B} \subseteq \mathcal{A}$ is irreducible (i.e., $\mathcal{B}' \cap \mathcal{A} = \mathbb{C}$).

Proof: $a \in (\mathcal{B}' \cap \mathcal{A})^+$ non-invertible $\implies a$ not full rel. to \mathcal{B} .

► $\mathcal{B}' \cap \mathcal{A} = \mathbb{C}$ and \mathcal{A}, \mathcal{B} simple unital $\not\Rightarrow \mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible.

Definition: Given unital inclusion $\mathcal{B} \subseteq \mathcal{A}$ of C^* -algs, and $a \in \mathcal{A}$. Set

$$C_{\mathcal{B}}(a) = \overline{\text{conv}\{u^*au : u \in \mathcal{U}(\mathcal{B})\}}.$$

- \mathcal{A} has *Dixmier property* if $C_{\mathcal{A}}(a) \cap \mathbb{C}1_{\mathcal{A}} \neq \emptyset \ \forall a \in \mathcal{A}$
- $\mathcal{B} \subseteq \mathcal{A}$ has the *relative Dixmier property* if $C_{\mathcal{B}}(a) \cap \mathbb{C}1_{\mathcal{A}} \neq \emptyset \ \forall a \in \mathcal{A}$

Theorem [Popa]: $\mathcal{B} \subseteq \mathcal{A}$ has relative Dixmier property if

- \mathcal{B} has Dixmier property,
- $\mathcal{B} \subseteq \mathcal{A}$ has finite Jones index wrt some cond. expect. $E: \mathcal{A} \rightarrow \mathcal{B}$,
- $\pi_{\varphi}(\mathcal{B})' \cap \pi_{\varphi}(\mathcal{A})'' = \mathbb{C}$, for some state φ on \mathcal{A} .

- If $\mathcal{B} \subseteq \mathcal{A}$ has the rel. Dixmier property, and $\tau = \text{trace on } \mathcal{A}$, then $C_{\mathcal{B}}(a) \cap \mathbb{C}1_{\mathcal{A}} = \{\tau(a) \cdot 1_{\mathcal{A}}\}$, for $a \in \mathcal{A}$.
- For $a \in \mathcal{A}$: $C_{\mathcal{B}}(a) \in \mathbb{C} \setminus \{0\} \implies a \text{ is full rel. to } \mathcal{B}$.

$\mathcal{B} \subseteq \mathcal{A}$ has rel. Dixmier property **and** \mathcal{A} has (faithful) tracial state
 $\implies \mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible.

Definition: An inclusion $\mathcal{B} \subseteq \mathcal{A}$ with cond. expectation $E: \mathcal{A} \rightarrow \mathcal{B}$ has the *pinching property* if $\forall a \in \mathcal{A}^+$ and $\forall \varepsilon > 0 \exists$ contraction $h \in \mathcal{B}$ st

$$\|h^*(a - E(a))h\| \leq \varepsilon \quad \text{and} \quad \|h^*E(a)h\| \geq \|E(a)\| - \varepsilon.$$

Example [Elliott, Kishimoto, Olesen–Pedersen]: If $\Gamma \curvearrowright \mathcal{A}$ is a properly outer action of Γ on C^* -alg \mathcal{A} , then $\mathcal{A} \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$ has pinching property wrt canonical cond. expectation $E: \mathcal{A} \rtimes_{\text{red}} \Gamma \rightarrow \mathcal{A}$.

If $\mathcal{B} \subseteq \mathcal{A}$ has pinching property wrt some *faithful* cond. expectation $E: \mathcal{A} \rightarrow \mathcal{B}$, and \mathcal{B} simple, then $\mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible.

Definition: Given inclusion $\mathcal{B} \subseteq \mathcal{A}$ of C^* -algs and cond. expect. $E: \mathcal{A} \rightarrow \mathcal{B}$, set

$$\text{Ind}(E) = \lambda^{-1}, \quad \lambda = \sup\{t \geq 0 \mid \forall a \in \mathcal{A}^+ : E(a) \geq ta\}.$$

Theorem [Izumi, 2002]: Given $\mathcal{B} \subseteq \mathcal{A}$ and cond. expect. $E: \mathcal{A} \rightarrow \mathcal{B}$ with $\text{Ind}(E) < \infty$.

- ▶ If \mathcal{A} (or \mathcal{B}) is simple, then \mathcal{B} (or \mathcal{A}) is a finite direct sum of simple C^* -algebras.
- ▶ In particular, if $\mathcal{A} \cap \mathcal{B}' = \mathbb{C}$, then \mathcal{A} is simple iff \mathcal{B} is simple.

Corollary: Given $\mathcal{B} \subseteq \mathcal{A}$ simple with cond. expect. $E: \mathcal{A} \rightarrow \mathcal{B}$ st $\text{Ind}(E) < \infty$. Then: $\mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible $\iff \mathcal{A} \cap \mathcal{B}' = \mathbb{C}$.

Outline

- 1 C^* -irreducible inclusions
- 2 von Neumann algebras
- 3 Inductive limits and tensor products
- 4 Inclusions arising from groups and dynamics
- 5 Bisch–Haagerup type inclusions

Theorem [Popa]: Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of separable II_1 -factors. TFAE:

- (i) $\mathcal{N} \subseteq \mathcal{M}$ is C^* -irreducible,
- (ii) $\mathcal{N} \subseteq \mathcal{M}$ has the relative Dixmier property,
- (iii) $\mathcal{N}' \cap \mathcal{M} = \mathbb{C}$ and $[\mathcal{M} : \mathcal{N}] < \infty$.

(ii) \iff (iii) is the main result of a paper of Popa.

(ii) \implies (i) already noted.

(i) \implies $\mathcal{N}' \cap \mathcal{M} = \mathbb{C}$ also already noted.

(i) \implies $[\mathcal{M} : \mathcal{N}] < \infty$ follows from results of Popa, resp., F. Pop:

Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of factors.

- $\mathcal{N}' \cap \mathcal{M} = \mathbb{C}$ iff \forall non-zero projections $p \in \mathcal{M}$: $\bigvee_{u \in \mathcal{U}(\mathcal{N})} u^* p u = 1$,
- $\mathcal{N} \subseteq \mathcal{M}$ is C^* -irreducible iff \forall non-zero projections $p \in \mathcal{M}$
 $\exists u_1, \dots, u_n \in \mathcal{U}(\mathcal{N})$ st $\sum_j u_j^* p u_j \geq 1$.

The two conditions above are not equivalent by Popa's theorem. Is the following intermediate property equivalent to any of the two above?

- $\forall p \in \mathcal{M}$ non-zero projection $\exists u_1, \dots, u_n \in \mathcal{U}(\mathcal{N})$ st $\bigvee_j u_j^* p u_j = 1$.

Question: Are all irreducible inclusions $\mathcal{N} \subseteq \mathcal{M}$ of type III factors C^* -irreducible?

Outline

- 1 C^* -irreducible inclusions
- 2 von Neumann algebras
- 3 Inductive limits and tensor products
- 4 Inclusions arising from groups and dynamics
- 5 Bisch–Haagerup type inclusions

Goal: Build a C^* -irreducible inclusions $\mathcal{B} \subseteq \mathcal{A}$ from inductive limits:

$$\begin{array}{ccccccc} \mathcal{B}_1 & \xrightarrow{\mu_1} & \mathcal{B}_2 & \xrightarrow{\mu_2} & \mathcal{B}_3 & \xrightarrow{\mu_3} & \cdots \longrightarrow \mathcal{B} \\ \iota_1 \downarrow & & \iota_2 \downarrow & & \iota_3 \downarrow & & \downarrow \iota \\ \mathcal{A}_1 & \xrightarrow{\lambda_1} & \mathcal{A}_2 & \xrightarrow{\lambda_2} & \mathcal{A}_3 & \xrightarrow{\lambda_3} & \cdots \longrightarrow \mathcal{A} \end{array}$$

Proposition: $\mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible iff $\forall n \geq 1 \ \forall a \in \mathcal{A}_n^+ \setminus \{0\}$
 $\exists m \geq n$ st $\lambda_{m,n}(a)$ is full relatively to $\iota_m(\mathcal{B}_m)$.

Proposition: $\mathcal{A}, \mathcal{B} \subseteq \mathcal{E}$ unital fin. dim. C^* -algs. Every $a \in \mathcal{A}^+ \setminus \{0\}$ is full relatively to $\mathcal{B} \iff \mathcal{A}$ and $\mathcal{B}' \cap \mathcal{E}$ are **everywhere non-orthogonal** in \mathcal{E} , i.e.,
 $\forall x \in \mathcal{A}^+ \ \forall y \in (\mathcal{B}' \cap \mathcal{E})^+ : \ x \perp y \implies x = 0 \text{ or } y = 0$.

Corollary: Given inductive systems of inclusions as above with all \mathcal{B}_n and \mathcal{A}_n finite dimensional. Then $\mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible if $\forall n \geq 1$:

$$\lambda_n(\mathcal{A}_n) \subseteq \mathcal{A}_{n+1} \text{ and } \iota_{n+1}(\mathcal{B}_{n+1})' \cap \mathcal{A}_{n+1} \subseteq \mathcal{A}_{n+1}$$

are **everywhere non-orthogonal**.

Combining the facts above one can construct C^* -irreducible inclusions of UHF-algebras (and AF-algebras), eg:

Corollary: If $\mathcal{B}_n \subseteq \mathcal{A}_n$ is C^* -irreducible for all n , then $\mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible as well.

Theorem: For each pair of UHF-algebras \mathcal{A} and \mathcal{B} for which there exists a unital inclusion $\mathcal{B} \rightarrow \mathcal{A}$, there also exists a C^* -irreducible inclusion $\mathcal{B} \rightarrow \mathcal{A}$.

► I expect that this theorem also holds with UHF-algebras replaced with simple AF-algebras.

Example: One can also obtain non-trivial C^* -irreducible of UHF-algebras as $\mathcal{B} \subseteq \mathcal{B} \rtimes \mathbb{Z}_d$, for some outer action $\mathbb{Z}_d \curvearrowright \mathcal{B}$ on a UHF-alg \mathcal{B}

Warning: One cannot detect C^* -irreducibilty of an inclusion $\mathcal{B} \subseteq \mathcal{A}$ of AF-algebras by K_0 or by their Bratteli diagrams.

Theorem (Zacharias–Zsido):

\mathcal{B} = any unital C^* -alg.

\mathcal{E} = unital simple C^* -alg with Wassermann's property (S),

Then each intermediate C^* -alg $\mathcal{E} \otimes \mathbb{C} \subseteq \mathcal{D} \subseteq \mathcal{E} \otimes \mathcal{B}$ is of the form

$\mathcal{D} = \mathcal{E} \otimes \mathcal{B}_0$, for some $\mathcal{B}_0 \subseteq \mathcal{B}$.

Corollary: If $\mathcal{B} \subseteq \mathcal{A}$ is C^* -irreducible and \mathcal{E} is as above (e.g., $\mathcal{E} = \mathcal{Z}$ or $\mathcal{E} = \mathcal{O}_\infty$), then $\mathcal{E} \otimes \mathcal{B} \subseteq \mathcal{E} \otimes \mathcal{A}$ is C^* -irreducible as well.

Question: Let $\mathcal{B}_i \subseteq \mathcal{A}_i$, $i \in I$, be C^* -irreducible. Is it true that

$$\bigotimes_{i \in I} \mathcal{B}_i \subseteq \bigotimes_{i \in I} \mathcal{A}_i$$

is C^* -irreducible? It suffices to check this when $|I| = 2$.

Yes, if each $\mathcal{B}_i \subseteq \mathcal{A}_i$ has relative Dixmier property or pinching property.

Outline

- 1 C^* -irreducible inclusions
- 2 von Neumann algebras
- 3 Inductive limits and tensor products
- 4 Inclusions arising from groups and dynamics
- 5 Bisch–Haagerup type inclusions

Given an action $\Gamma \curvearrowright \mathcal{A}$ of a group Γ on a unital C^* -alg \mathcal{A} .

- ▶ $\mathcal{A} \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$,
- ▶ $C_\lambda^*(\Gamma) \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$.

The former inclusion is well understood:

Theorem [Kishimoto, Olesen–Pedersen, Popa]: TFAE when \mathcal{A} simple:

- (i) $\mathcal{A} \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$ is C^* -irreducible,
- (ii) $\Gamma \curvearrowright \mathcal{A}$ is outer,
- (iii) $\mathcal{A}' \cap (\mathcal{A} \rtimes_{\text{red}} \Gamma) = \mathbb{C}$.

Moreover, if \mathcal{A} has the Dixmier property (i.e., has at most tracial state), then (i)–(iii) are equivalent to:

- (iv) $\mathcal{A} \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$ has the relative Dixmier property.

(ii) $\Rightarrow \mathcal{A} \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$ has pinching property wrt $E: \mathcal{A} \rtimes_{\text{red}} \Gamma \rightarrow \mathcal{A} \Rightarrow$ (i).

(ii) \Rightarrow (iv) by a result of Popa.

Theorem [Cameron–Smith, 2019; Izumi 2002]: If $\Gamma \curvearrowright \mathcal{A}$ is an outer action on a unital simple C^* -alg \mathcal{A} (so that $\mathcal{A} \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$ is C^* -irreducible), then

$$\mathcal{A} \subseteq \mathcal{D} \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma \implies \mathcal{D} = \mathcal{A} \rtimes_{\text{red}} \Lambda,$$

for some $\Lambda \subseteq \Gamma$.

Note to thm: For $x = \sum_{t \in \Gamma} a_t u_t \in \mathcal{A} \rtimes_{\text{red}} \Gamma$ (with $a_t \in \mathcal{A}$ and $t \mapsto u_t$ repn of Γ in $\mathcal{A} \rtimes_{\text{red}} \Gamma$), set

$$\text{supp}(x) = \{t \in \Gamma : a_t \neq 0\}.$$

Must show: $t \in \text{supp}(x) \Rightarrow u_t \in C^*(\mathcal{A}, x)$. This can quite easily be done using the following:

Lemma (Popa): \mathcal{A} = simple C^* -alg w/ Dixmier property, $a_1, \dots, a_n \in \mathcal{A}$, $\alpha_1, \dots, \alpha_n \in \text{Aut}(\mathcal{A})$ outer, $\varepsilon > 0$. Then $\exists v_1, \dots, v_m \in \mathcal{U}(\mathcal{A})$ st

$$\left\| \frac{1}{m} \sum_{j=1}^m v_j a_i \alpha_i(v_j)^* \right\| < \varepsilon, \quad i = 1, \dots, n.$$

Bedos–Omland extended both theorems above to the case of inclusions $\mathcal{A} \rtimes \Lambda \subseteq \mathcal{A} \rtimes \Gamma$ where $\Lambda \triangleleft \Gamma$ is *normal*: If $\mathcal{A} \rtimes \Lambda$ is simple, then

$$\begin{aligned}\mathcal{A} \rtimes \Lambda \subseteq \mathcal{A} \rtimes \Gamma \text{ is } C^*\text{-irreducible} &\iff \mathcal{A} \rtimes \Lambda \subseteq \mathcal{A} \rtimes \Gamma \text{ is irreducible} \\ &\iff \Gamma/\Lambda \curvearrowright \mathcal{A} \rtimes \Lambda \text{ is outer.}\end{aligned}$$

Under these conditions they further show that all *intermediate C^* -algs* arise as crossed products wrt *intermediate groups*.

Example: For $2 \leq n < \infty$ the inclusion $M_{n\infty} \subseteq \mathcal{O}_n$ is C^* -irreducible because it satisfies the pinching property (as shown by Cuntz).

This inclusion also satisfies the averaging lemma by Popa, and hence also an analog of the Cameron–Smith–Izumi thm:

$$M_{n\infty} \subseteq \mathcal{D} \subseteq \mathcal{O}_n \implies \mathcal{D} = C^*(M_{n\infty}, s_1^k), \text{ for some } k \geq 0.$$

Theorem: Given $\alpha: \Gamma \curvearrowright \mathcal{A}$ where $\Gamma = C^*$ -simple group and $\mathcal{A} =$ unital C^* -alg. TFAE:

- (i) $C_\lambda^*(\Gamma) \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$ is C^* -irreducible,
- (ii) $\forall a \in \mathcal{A}^+, a \neq 0, \exists t_1, \dots, t_n \in \Gamma \text{ st } \sum_{j=1}^n \alpha_{t_j}(a) \geq 1_{\mathcal{A}}$,
- (iii) each state ϕ on \mathcal{A} is Γ -faithful: $a \in \mathcal{A}^+$:
 $\forall t \in \Gamma : \phi(\alpha_t(a)) = 0 \implies a = 0$,
- (iv) $\exists \mu \in \text{Prob}(\Gamma)$ st each μ -stationary state ϕ on \mathcal{A} is faithful.

Amrutam–Kalantar proved (iv) \Rightarrow (i) (assuming μ in (iv) is C^* -simple).

- ▶ Condition (ii) says that the action α is “strongly mixing” and implies minimality.
- ▶ For \mathcal{A} commutative: (ii) $\iff \alpha$ is minimal.
- ▶ BKKO: Γ C^* -simple and $\Gamma \curvearrowright \mathcal{A}$ minimal $\implies \mathcal{A} \rtimes_{\text{red}} \Gamma$ simple.

Theorem: Given $\alpha: \Gamma \curvearrowright \mathcal{A}$ where $\Gamma = C^*$ -simple group and \mathcal{A} = unital C^* -alg. TFAE:

- (i) $C_\lambda^*(\Gamma) \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$ is C^* -irreducible,
- (ii) $\forall a \in \mathcal{A}^+, a \neq 0, \exists t_1, \dots, t_n \in \Gamma \text{ st } \sum_{j=1}^n \alpha_{t_j}(a) \geq 1_{\mathcal{A}}$,
- (iii) each state ϕ on \mathcal{A} is Γ -faithful: $a \in \mathcal{A}^+$:
 $\forall t \in \Gamma : \phi(\alpha_t(a)) = 0 \implies a = 0$,
- (iv) $\exists \mu \in \text{Prob}(\Gamma)$ st each μ -stationary state ϕ on \mathcal{A} is faithful.

Theorem [Amrutam–Ursu, 2021]: If we further assume Γ has (AP) and $\text{Ker}(\alpha: \Gamma \rightarrow \text{Aut}(\mathcal{A})) \subseteq \Gamma$ is “plump”, then

$$C_\lambda^*(\Gamma) \subseteq \mathcal{D} \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma \implies \mathcal{D} = \mathcal{B} \rtimes \Gamma,$$

for some Γ -invariant $\mathcal{B} \subseteq \mathcal{A}$.

Remark: \exists irreducible inclusions $C_\lambda^*(\Gamma) \subseteq \mathcal{A} \rtimes_{\text{red}} \Gamma$ of simple C^* -algs that are not C^* -irreducible.

We now consider inclusions of C^* -algs (and von Neumann algs) arising from inclusions $\Lambda \subseteq \Gamma$ of groups.

Definition: Γ is **icc** rel. to Λ iff $\{tst^{-1} : t \in \Lambda\}$ is infinite $\forall s \in \Gamma \setminus \{e\}$.

Proposition: Given groups $\Lambda \subseteq \Gamma$. Then

$\mathcal{L}(\Lambda) \subseteq \mathcal{L}(\Gamma)$ is C^* -irreducible $\iff \Gamma$ is icc rel. to Λ and $[\Gamma : \Lambda] < \infty$.

Proof:

- $\mathcal{L}(\Lambda)' \cap \mathcal{L}(\Gamma) = \mathbb{C} \iff \Gamma$ is icc relatively to Λ .
- $[\mathcal{L}(\Gamma) : \mathcal{L}(\Lambda)] = [\Gamma : \Lambda] < \infty$.

We proceed to consider when $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ is C^* -irreducible. A few quick facts (the second follows from Popa's theorem):

- $C_\lambda^*(\Lambda)' \cap C_\lambda^*(\Gamma) = \mathbb{C} \iff \Gamma$ is icc rel. to Λ .
- For $|\Gamma : \Lambda| < \infty$: $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ C^* -irreduc. $\iff \Gamma$ icc rel. to Λ and Γ C^* -simple.
- $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ C^* -irreducible $\not\Rightarrow [\Gamma : \Lambda] < \infty$.

Theorem: Let $\Lambda \subseteq \Gamma$ be groups.

- (i) $\exists \Gamma \curvearrowright X$ top. free bdry action st $\forall \mu \in \text{Prob}(X) \exists \delta_x \in \overline{\Lambda.\mu}$ for which Γ acts freely on x ,
- (ii) $\tau_0 \in \overline{\{s.\varphi : s \in \Lambda\}}^{\text{weak}^*}$, for all states φ on $C_\lambda^*(\Gamma)$,
- (iii) $\tau_0 \in \overline{\text{conv}\{s.\varphi : s \in \Lambda\}}^{\text{weak}^*}$, for all states φ on $C_\lambda^*(\Gamma)$,
- (iv) The relative Powers' averaging procedure holds: $\forall s_1, \dots, s_n \in \Gamma \setminus \{e\}$
 $\forall \varepsilon > 0 \exists t_1, \dots, t_m \in \Lambda$ st $\|\frac{1}{m} \sum_{k=1}^m \lambda(t_k s_j t_k^{-1})\| \leq \varepsilon$, for $j = 1, \dots, n$.
- (v) $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ has the relative Dixmier property,
- (vi) $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ is C^* -irreducible.

Then (i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v) \Rightarrow (vi), & (vi) \Rightarrow (v) if $[\Gamma : \Lambda] < \infty$.

► (vi) \Rightarrow (v) when $[\Gamma : \Lambda] < \infty$ follows from Popa's thm.

► Condition (iv) is termed $\Lambda \subseteq \Gamma$ is *plump* by Amrutam–Ursu.

Example: $C_\lambda^*(\mathbb{F}_n) \subseteq C_\lambda^*(\mathbb{F}_m)$ is C^* -irreducible when $n \leq m$.

- (i) $\exists \Gamma \curvearrowright X$ top. free bdry action st $\forall \mu \in \text{Prob}(X) \exists \delta_x \in \overline{\Lambda.\mu}$ for which Γ acts freely on x ,
- (ii) $\tau_0 \in \overline{\{s.\varphi : s \in \Lambda\}}^{\text{weak}^*}$, for all states φ on $C_\lambda^*(\Gamma)$,
- (iii) $\tau_0 \in \overline{\text{conv}\{s.\varphi : s \in \Lambda\}}^{\text{weak}^*}$, for all states φ on $C_\lambda^*(\Gamma)$,
- (iv) The relative Powers' averaging procedure holds: $\forall s_1, \dots, s_n \in \Gamma \setminus \{e\}$ $\forall \varepsilon > 0 \exists t_1, \dots, t_m \in \Lambda$ st $\|\frac{1}{m} \sum_{k=1}^m \lambda(t_k s_j t_k^{-1})\| \leq \varepsilon$, for $j = 1, \dots, n$.
- (v) $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ has the relative Dixmier property,
- (vi) $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ is C^* -irreducible.

Ursu: For Λ is **normal** in Γ : (iv) $\implies \Gamma \curvearrowright \partial_F \Lambda$ is free \implies (i).
 Hence (i)–(v) are equivalent.

Bedos–Omland: For Λ is **normal** in Γ : (i)–(vi) are equivalent, and also equiv. to Γ icc rel. to Λ , i.e., $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ is irreducible.

Bedos–Omland: $\exists C^*$ -simple groups $\Lambda \subseteq \Gamma$ with Γ icc rel. to Λ st $C_\lambda^*(\Lambda) \subseteq C_\lambda^*(\Gamma)$ not C^* -irreducible.

Outline

- 1 C^* -irreducible inclusions
- 2 von Neumann algebras
- 3 Inductive limits and tensor products
- 4 Inclusions arising from groups and dynamics
- 5 Bisch–Haagerup type inclusions

In their Annales Scient. ENS paper from 1996, Bisch and Haagerup considered inclusions of II_1 -factors of the form $\mathcal{P}^H \subseteq \mathcal{P} \rtimes G$, where P is a type II_1 -factor (e.g., $\mathcal{P} = \mathcal{R}$) and H and G are finite groups acting outerly on \mathcal{P} , i.e., $G, H \subseteq \text{Out}(\mathcal{P})$.

Theorem [Bisch-Haagerup]:

- (i) $\mathcal{R}^H \subseteq \mathcal{R} \rtimes G$ finite depth $\Leftrightarrow \langle G, H \rangle$ finite,
- (ii) $\mathcal{R}^H \subseteq \mathcal{R} \rtimes G$ amenable $\Leftrightarrow \langle G, H \rangle$ amenable,
- (iii) For any II_1 -factor \mathcal{P} : $\mathcal{P}^H \subseteq \mathcal{P} \rtimes G$ irreducible $\Leftrightarrow G \cap H = \{\text{id}_{\mathcal{P}}\}$.

Given actions $G \curvearrowright \mathcal{A}$ and $H \curvearrowright \mathcal{A}$ on a C^* -alg \mathcal{A} , with H finite. What can we say about inclusions of C^* -algs: $\mathcal{A}^H \subseteq \mathcal{A} \rtimes G$?

Theorem [Izumi]: If H is a finite group acting outerly on a unital simple C^* -alg \mathcal{A} , then

- (i) $\mathcal{A}^H \subseteq \mathcal{D} \subseteq \mathcal{A} \implies \mathcal{D} = \mathcal{A}^L$, for some $L \subseteq H$,
- (ii) $\mathcal{A}^H \subseteq \mathcal{A}$ is C^* -irreducible.

Theorem [Echterhoff-R]: Given $G \curvearrowright \mathcal{A}$ and $H \curvearrowright \mathcal{A}$ with H finite, where \mathcal{A} = unital simple C^* -alg. TFAE:

- (i) $\mathcal{A}^H \subseteq \mathcal{A} \rtimes_r G$ C^* -irreducible,
- (ii) $(\mathcal{A}^H)' \cap (\mathcal{A} \rtimes_r G) = \mathbb{C}$,
- (iii) $G \cap H = \{\text{id}\}$ in $\text{Out}(\mathcal{A})$.

Moreover, when H abelian and the actions of G and H commute, there is a Galois type correspondance between intermediate C^* -algs of $\mathcal{A}^H \subseteq \mathcal{A} \rtimes_r G$ and subgroups of $\widehat{H} \times G$.

The proof uses C^* -irreducibility of $\mathcal{A}^H \subseteq \mathcal{A}$ and the following:

Lemma [Echterhoff-R]: Assuming (iii) above:

$\forall x \in \mathcal{A} \rtimes_r G \quad \forall \varepsilon > 0 \quad \exists h \in (\mathcal{A}^H)^+ \text{ with } \|h\| = 1 \text{ st}$

$$\|h(x - E_{\mathcal{A}}(x))h\| < \varepsilon, \quad \|hE_{\mathcal{A}}(x)h\| \geq \|E_{\mathcal{A}}(x)\| - \varepsilon.$$

Examples: Let $\theta \in \mathbb{R} \setminus \mathbb{Q}$ and \mathcal{A}_θ = associated irr. rotation alg. There is a canonical outer action $\alpha: \mathrm{SL}_2(\mathbb{Z}) \rightarrow \mathrm{Aut}(\mathcal{A}_\theta)$ given by

$$\alpha_x(u) = e^{2\pi i x_{11} x_{21} \theta} u^{x_{11}} v^{x_{21}}, \quad \alpha_x(v) = e^{2\pi i x_{12} x_{22} \theta} u^{x_{12}} v^{x_{22}},$$

for $x \in \mathrm{SL}_2(\mathbb{Z})$.

Up to conjugacy \exists precisely 4 finite cyclic subgroups of $\mathrm{SL}_2(\mathbb{Z})$ isomorphic to $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6$.

Theorem [Echterhoff, Luck, Phillips, Walters]: $(\mathcal{A}_\theta)^{\mathbb{Z}/k}$ and $\mathcal{A}_\theta \rtimes \mathbb{Z}/k$ are simple AF-algebras, for $k = 2, 3, 4, 6$ (and K -theory is computed).

The actions of \mathbb{Z}_2 and \mathbb{Z}_3 commute, while the actions of \mathbb{Z}_3 and \mathbb{Z}_4 don't.

Corollary (Echterhoff-R): For $(F_1, F_2) = (\mathbb{Z}_2, \mathbb{Z}_3), (\mathbb{Z}_3, \mathbb{Z}_4), (\mathbb{Z}_3, \tilde{\mathbb{Z}}_3)$, the inclusions

$$(\mathcal{A}_\theta)^{F_1} \subseteq \mathcal{A}_\theta \rtimes F_2, \quad (\mathcal{A}_\theta)^{F_2} \subseteq \mathcal{A}_\theta \rtimes F_1$$

are C^* -irreducible inclusion of AF-algebras with non-AF intermediate C^* -alg, namely \mathcal{A}_θ .