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Liftable ∗- homomorphism

Let A = C0((0, 1]).Then every ∗-homomorphisms φ : C0(0, 1]→ B/I
are liftable.
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Space of ∗-homomorphisms

Let A and B be separable C ∗-algebras. We denote the space of
∗-homomorphism from A to B by Hom(A,B).

Under the point-norm topology, Hom(A,B) is

metrizable. In particular, If G = {a1, a2, . . .} is a generating set of A
satisfying lim

n→∞
‖an‖ = 0, we can define a metric on Hom(A,B) as

follows

d(φ, ψ) = sup
j
‖φ(aj)− ψ(aj)‖, φ, ψ ∈ Hom(A,B).

separable.
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Questions

If a ∗-homomorphism φ : A→ B/I is close to a liftable
∗-homomorphism ψ : A→ B/I , what conditions on A ensures φ is
liftable?

What conditions on A ensure that the point-norm limit of a sequence
of liftable ∗-homomorphisms φn : A→ B/I are liftable?
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An Example (Blackadar ’16)

Let A be the universal C ∗-algebra generated by a sequence of projections
{p1, p2, . . .}

Let B = C ([0, 1]), I = C0((0, 1)). Then B/I ∼= C⊕ C.

Define φn : A→ B/I by

φn(pk) =

{
(0, 0) k ≤ n
(0, 1) k > n

φn converges point-norm to the zero homomorphism.
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`-open and `-closed C ∗-algebras

Definition (Blackadar ’16)

Let A be a separable C ∗-algebra and Hom(A,B, I ) be space of liftable
∗-homomorphism from A to B/I .

A is `-open (or `-closed) if for every separable C ∗-algebras B and
closed ideal I of B, Hom(A,B, I ) is open (or closed) in Hom(A,B/I ).
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Semiprojective C ∗-algebra

Some examples of semiprojective C ∗-algebras

Finite dimensional C ∗-algebras,

The universal C ∗-algebras generated by finite unitaries, C ∗(Fn),

{f ∈ C (S1,Mn) : f (1) is scalar }.
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Lifting close ∗-homomorphisms from `-open C ∗-algebras

Theorem 1 (O-Tikuisis)

Let A be a `-open C ∗-algebra generated by a finite or countable set
G = {a1, a2, . . .} with lim

n→∞
‖an‖ = 0 if G is infinite. Then for any ε > 0,

there is a δ > 0 such that whenever B is a separable C*-algebra, I is a
closed ideal of B, ψ and φ are ∗-homomorphisms from A to B/I with
‖φ(aj)− ψ(aj)‖ < δ for all j and such that φ lifts to a ∗-homomorphism
φ : A→ B, then ψ also lifts to a ∗-homomorphism ψ : A→ B with
‖ψ(aj)− φ(aj)‖ < ε for all j .
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The following consequences follow using the ideas of Blackadar.

Corollary 1

Let A be a `-open C ∗-algebra. Then Hom(A,B) is locally path-connected
for any separable C ∗-algebra B.

Example

Let X = {(x , y) : y = sin(πx ), 0 < x ≤ 1} ∪ {(0, y) : −1 ≤ y ≤ 1}. Then
C (X ) is not `-open.
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Homotopy Lifting Theorem

Let A be a `-open C ∗-algebra, B a separable C ∗-algebra, I a closed ideal
of B, (φt)(0 ≤ t ≤ 1) a point-norm continuous path of ∗-homomorphism
from A to B/I .

Suppose φ0 lifts to a ∗-homomorphism φ0 : A→ B. Then
there is a point-norm continuous path (φt)(0 ≤ t ≤ 1) of
∗-homomorphisms from A to B starting at φ0 such that φt is a lift of φt
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Combining all the previous theorems and corollaries, we have the following
characterization of `-open C ∗-algebra.

Theorem 2 (0-Tikuisis)

Let A be a separable C ∗-algebra. Then the following are equivalent

1 A is `-open

2 A satisfies the conclusion of Theorem 1

3 Hom(A,B) is locally-path connected for all separable C ∗-algebras B
and A satisfies the conclusion of the homotopy lifting theorem.
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An immediate consequence of Theorem 2 confirms a conjecture of
Blackadar.

Corollary 2 (O-Tikuisis)

Let A be a `-open C ∗-algebra. Then A is `-closed.
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A C ∗-algebra which is `-closed but not `-open (Blackadar
’16)

Let A be the universal C ∗-algebra generated by a sequence of projections
{p1, p2, . . .}

Let B be a C ∗-algebra, I an ideal of B, and φn : A→ B/I defined by

φn(pk) = q
(n)
k

be a sequence of liftable ∗-homomorphisms.

Suppose φn converges point-norm to a ∗-homomrphism φ : A→ B/I
defined by

φ(pk) = qk .

Then q
(n)
k → qk .

Semiprojectivity of C implies qk lifts for each k . Hence, A is `-closed.
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Theorem (Sorensen-Thiel ’ 12)

Let C (X ) be a unital, separable C ∗-algebra. Then the following are
equivalent

1 C (X ) is a semiprojective C ∗-algebra

2 X is an ANR and dim(X ) ≤ 1
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Theorem (O-Tikuisis)

Let X be a compact metrizable space. Then the following are equivalent

1 C (X ) is a semiprojective C ∗-algebra

2 C (X ) is a `-open C ∗-algebra

3 X is a ANR and dim(X ) ≤ 1
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Some Future Research Directions

Investigation of whether `-open C ∗-algebras coincide with
semiprojective C ∗ algebras in general.

Characterization of `-closed C ∗-algebras.

Possible application of homotopy lifting theorem of `-open
C ∗-algebras.
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Thank you for your attention.


