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Central theme: A certain class of completely positive maps (factorizable
maps), introduced by C. Anantharaman-Delaroche ‘05.

Their study led to investigating the convex structure of the set of unital
quantum channels, interesting applications in the analysis of QIT (e.g.,
settling in the negative the Asymptotic Quantum Birkhoff Conjecture) and
revealed infinite dim phenomena therein, connections to/reformulations of
the Connes Embedding Problem, and recently, through a new view-point,
some interesting problems in operator algebras.

For n ≥ 2, consider following sets of maps T : Mn(C)→ Mn(C):

CPT(n)

FM(n) ⊆ UCPT(n)
⊆
⊆

UCP(n)

all compact and convex subsets of Cn4
.
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I (Choi ’73): Let T : Mn(C)→ Mn(C) linear. Then

T ∈ CPT(n) ⇐⇒ ∃A1, . . . ,Ad ∈ Mn(C) : Tx =
d∑

j=1

A∗j xAj ,

d∑
j=1

AjA
∗
j = In.

T ∈ UCP(n) ⇐⇒ ∃A1, . . . ,Ad ∈ Mn(C) : Tx =
d∑

j=1

A∗j xAj ,

d∑
j=1

A∗j Aj = In.

When {A1, . . . ,Ad} lin independent, d is called the Choi-rank of T .

Thm (Choi ’75): T ∈ ∂e(CPT(n)) ⇐⇒ {AiA
∗
j }di ,j=1 lin independent.

Respectively, T ∈ ∂e(UCP(n)) ⇐⇒ {A∗i Aj}di ,j=1 lin independent.

Thm (Landau-Streater ’93): T ∈ ∂e(UCPT(n)) ⇐⇒ {A∗i Aj ⊕ AjA
∗
i }i ,j

lin independent.

Hence ∂e(UCPT(n)) ⊇
(
∂e(UCP(n)) ∪ ∂e(CPT(n))

)
∩ UCPT(n).

Question: Are these sets equal?
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Definition (Anantharaman-Delaroche ‘05): A unital quantum channel
T : Mn(C)→ Mn(C) is called factorizable if ∃ vN alg (N, ψ) with n.f.
tracial state and unital ∗-homs α, β : Mn(C)→ Mn(C)⊗ N: T = β∗ ◦ α.

Mn(C)
T //

α
$$

Mn(C)
β

zz
Mn(C)⊗ N

β∗=β−1◦Eβ(Mn(C))

@@

I α, β are injective (thus embeddings) and trace-preserving. Since unital
embeddings of Mn(C) into a vN alg are unitarily equiv, can take

β(x) = x ⊗ 1N , α(x) = u∗β(x)u, x ∈ Mn(C),

for some u ∈ Mn(C)⊗ N unitary; N can be taken II1-vN alg (even factor).

Theorem (Haagerup-M ’11): T : Mn(C)→ Mn(C) is a factorizable
quantum channel iff ∃ (N, τN) finite vN algebra (called ancilla) and a
unitary u ∈ Mn(C)⊗ N: Tx = (idMn(C) ⊗ τN)(u∗(x ⊗ 1N)u), x ∈ Mn(C).

Magdalena Musat Quantum channels, Factoriz, T (Mn ∗ Mn) COSy-Ottawa, 2022 4 / 18



Definition (Anantharaman-Delaroche ‘05): A unital quantum channel
T : Mn(C)→ Mn(C) is called factorizable if ∃ vN alg (N, ψ) with n.f.
tracial state and unital ∗-homs α, β : Mn(C)→ Mn(C)⊗ N: T = β∗ ◦ α.

Mn(C)
T //

α
$$

Mn(C)
β

zz
Mn(C)⊗ N

β∗=β−1◦Eβ(Mn(C))

@@

I α, β are injective (thus embeddings) and trace-preserving. Since unital
embeddings of Mn(C) into a vN alg are unitarily equiv, can take

β(x) = x ⊗ 1N , α(x) = u∗β(x)u, x ∈ Mn(C),

for some u ∈ Mn(C)⊗ N unitary; N can be taken II1-vN alg (even factor).

Theorem (Haagerup-M ’11): T : Mn(C)→ Mn(C) is a factorizable
quantum channel iff ∃ (N, τN) finite vN algebra (called ancilla) and a
unitary u ∈ Mn(C)⊗ N: Tx = (idMn(C) ⊗ τN)(u∗(x ⊗ 1N)u), x ∈ Mn(C).

Magdalena Musat Quantum channels, Factoriz, T (Mn ∗ Mn) COSy-Ottawa, 2022 4 / 18



Def/Thm (Haagerup-M ’11): T : Mn(C)→ Mn(C) is a factorizable
quantum channel iff ∃ (N, τN) finite vN algebra (called ancilla) and a
unitary u ∈ Mn(C)⊗ N: Tx = (idMn(C) ⊗ τN)(u∗(x ⊗ 1N)u), x ∈ Mn(C).

I (R. Werner): Factorizable channels are obtained by coupling the input
system to a maximally mixed ancillary one, executing a unitary rotation on
the combined system, and tracing out the ancilla.

I Automorphisms of Mn(C) are factorizable.

Let FM(n) denote all factorizable quantum channels on Mn(C), n ≥ 2.
Then FM(n) is convex and closed.

Proposition (Haagerup-M ’11): Let T ∈ UCPT(n), with canonical form

Tx =
d∑

i=1

A∗j xAj , x ∈ Mn(C).

If d := Choi-rank(T ) ≥ 2 and {A∗i Aj}d1≤i ,j lin indep, then T /∈ FM(n).
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I (Kümmerer ’83): UCPT(2) = conv(Aut(M2(C))). However,

UCPT(n) ) conv(Aut(Mn(C))) , n ≥ 3 ,

cf. (Kümmerer ’86, Landau-Streater ’93, Kümmerer-Maasen ’87).

I Asymptotic Quantum Birkhoff Conj (Smolin-Verstraete-Winter ’05):
Any T ∈ UCPT(n), n ≥ 3, satisfies

lim
k→∞

dcb

(
k⊗

i=1
T , conv(Aut(

k⊗
i=1

Mn(C)))

)
= 0 .

Theorem (Haagerup-M ’11): Let T ∈ UCPT(n), n ≥ 3. For k ≥ 1,

dcb

(
k⊗

i=1
T ,F

(
k⊗

i=1
Mn(C)

))
≥ dcb(T , FM(n)) .

I If T /∈ FM(n)), then dcb(T ,FM(n)) > 0.

As conv(Aut(Mn(C))) ⊂ FM(n), any non-factoriz channel fails AQBC.
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I For T ∈ UCPT(n), Choi-rank(T ) = 1 iff T ∈ Aut(Mn(C)).

Set ∂∗e (CPT(n)) = ∂e(CPT(n)) \ Aut(Mn(C)), and similarly ∂∗e (UCP(n)).

Cor: T ∈ (∂∗e (UCP(n)) ∪ ∂∗e (CPT(n))) ∩ UCPT(n)⇒ T /∈ FM(n).

Remark: Not easy to characterize non-factorizability in terms of the
convex structure of UCPT(n):

∂e(UCPT(n)) \
((
∂e(UCP(n)) ∪ ∂e(CPT(n))

)
∩ UCPT(n)

)
can

contain both factorizable and non-factorizable maps.

I T ∈ ∂∗e (UCPT(n)), Choi-rank > n ⇒ T /∈ ∂∗e (UCP(n)) ∪ ∂∗e (CPT(n)).

I (Ohno ’09): ∃T ∈ ∂∗e (UCPT(3)), Choi-rank 4; (H-M-R): T /∈ FM(3).

I (H-M-R ’21): Explicit family Tt ∈ ∂∗e (UCPT(3))∩FM(3), Choi-rank 4.
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A class of UCPT(n) maps constructed in (Haagerup-M-Ruskai ’21):

Given n ≥ 3, V1, . . . ,Vn ∈ U(n − 1) and t ∈ [−1, 1], t 6= −1/(n − 1), set

Am =
1√

n − 1− t2
S−m+1

(
t 0
0 Vm

)
Sm−1 , 1 ≤ m ≤ n.

Here S is the canonical shift on Cn.

I Can verify
∑n

m=1 A
∗
mAm = In =

∑n
m=1 AmA

∗
m. Thus, if

Tx =
n∑

m=1

A∗mxAm, x ∈ Mn(C),

then T ∈ UCPT(n). Moreover, the Choi-rank of T is n.
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Theorem A (H-M-R ‘21): For n ≥ 3 and t ∈ (−1, 1), t 6= −1/(n − 1),
there exists W = W ∗ ∈ U(n − 1) such that if V1 = . . . = Vn = W and
{Am}nm=1 are as above, then {A∗i Aj}ni ,j=1 linearly independent. Hence

T ∈ ∂∗e (UCP(n)) ∩ ∂∗e (CPT (n)),

thus T is non-factorizable.

Proof: Lots of linear algebra.

Theorem B (H-M-R ‘21): For n ≥ 3 and t ∈ (−1, 1), t 6= −1/(n − 1),
the set of n-tuples (V1, . . . ,Vn) ∈ U(n − 1)n such that {A∗i Aj}ni ,j=1 is
linearly indep has co-measure 0 w.r.t. Haar measure. Hence almost all
quantum channels T arising in this way are non-factorizable.

Proof: Theorem A + Algebraic Geometry.
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Infinite dimensional phenomena in QIT:

Question: Do we need (inf dim) vN algs to describe factorizable channels?

I For a factorizable channel, minimal ancilla (and its size) not unique.
E.g., consider the completely depolarizing channel Sn, n ≥ 2

Sn(x) : = trn(x)1n =

∫
U(n)

u∗xu dµ(u), x ∈Mn(C).

It’s factorizable, and possible ancillas are: Cn2
, Mn(C), but also (a corner

of) the reduced free product von Neumann alg (Mn(C), trn)∗ (Mn(C), trn).

Let FMfin(n) = factoriz channels on Mn(C) admitting a finite dim ancilla.

Theorem (Rørdam-M ‘19): FMfin(n) is not closed, whenever n ≥ 11.
Moreover, for each such n, there exist factorizable quantum channels on
Mn(C) which do require infinite dimensional (even type II1) ancilla.
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Theorem (Rørdam-M ‘19): FMfin(n) is not closed, whenever n ≥ 11.
Moreover, for each such n, there exist factorizable quantum channels on
Mn(C) which do require infinite dimensional (even type II1) ancilla.

Proof: Consider following sets of n × n complex matrices, n ≥ 2:

Gfin(n) =
{[
τ(u∗j ui )

]
: u1, . . . , un unitaries in arbitrary

finite dimens C∗-alg (A, τ)
}
,⊇

G(n) =
{[
τ(u∗j ui )

]
: u1, . . . , un unitaries in arbitrary finite

vN alg (M, τ)
}
.

I (Rørdam-M): Gfin(n) is convex ∀n ≥ 2, but not closed whenever n ≥ 11.

Note: If B ∈ Mn(C) correlation matrix (pos definite, diag entries equal 1),
the Schur multiplier TB ∈ UCPT (n). (Ricard ’08): If B has real entries,
then TB is factorizable.

I (Haagerup-M ’11): A Schur multiplier TB is factorizable iff B ∈ G(n).
Furthermore, TB ∈ FMfin(n) iff B ∈ Gfin(n).

The map B 7→ TB is an affine homeo, hence theorem follows.
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(Rørdam-M ’20): A new view-point on factorizable channels, leading to
further connections (and interesting open problems in C∗-algebras):

I FM(n) is parametrized by simplex of tracial states T (Mn(C) ∗Mn(C)).

More precisely, if τ ∈ T (Mn(C) ∗Mn(C)), let

Cτ (i , j ; k , `) = nτ
(
ι2(ek`)

∗ ι1(eij)
)
, 1 ≤ i , j , k , ` ≤ n,

where ι1, ι2 : Mn(C)→ Mn(C) ∗Mn(C) are the canonical inclusions. Then
Cτ ∈ Mn2(C) is positive, hence it is the Choi matrix of some c.p. lin map
Tτ : Mn(C)→ Mn(C), which turns out to be a factoriz quantum channel!

In fact, the map Φ: T (Mn(C) ∗Mn(C))→ FM(n), τ 7→ Φ(τ) := Tτ is an
affine continuous surjection, satisfying, moreover,

Φ(Tfin(Mn(C) ∗Mn(C))) = FMfin(n),

where Tfin = tracial states that factor through finite dim. C ∗-alg.
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The affine cont surj Φ: T (Mn(C) ∗Mn(C))→ FM(n), τ 7→ Tτ , satisfies

• Φ(Tfin(Mn(C) ∗Mn(C))) = FMfin(n),

• Φ(Tfin(Mn(C) ∗Mn(C))) = FMfin(n),

where Tfin = tracial states that factor through finite dim. C ∗-alg.

Thm (Haagerup-M ’15) Connes Embedding Problem (CEP) has positive
answer iff FMfin(n) = FM(n), ∀n ≥ 3.

Question: What can we say about Tfin(Mn(C) ∗Mn(C)) ?

• (Exel–Loring ’92): Mn(C) ∗Mn(C) residually finite dim. (RFD)

• (Blackadar ’85): Mn(C) ∗Mn(C) semi-projective.
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In general, given A = (sep) unital tracial C ∗-algebra, we have inclusions:

Tfin(A) ⊆ Tfin(A) ⊆ Tqd(A) ⊆ Tam(A) ⊆ Thyp(A) ⊆ T (A),

where Tqd(A) = quasi-diagonal traces, Tam(A) = amenable (liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces τ st πτ (A)′′ ↪→ Rω).

• CEP pos answer iff Thyp(A) = T (A), for all C ∗-alg A.

Reformulation of CEP: For all sep. unital tracial C ∗-algs (A, τ), there is
a unital trace- preserving ∗-hom ϕ : A→

∏∞
n=1 Mkn/I

ω, for some kn ≥ 1.

• (N. Brown ’06): ∃ exact RFD C ∗-alg A s.t. Tam(A) 6= Thyp(A).

• Open if Tqd(A) = Tam(A). Strong pos results: Tikuisis-Winter-White,
Schafhauser, Gabe.

• A (weakly) semi-projective =⇒ Tfin(A) = Tqd(A)

• (Hadwin–Shulman ’17): ∃ RFD C ∗-alg A s.t. Tfin(A) 6= Tqd(A).

Thm (Rørdam-M ’20): Tfin(Mn(C) ∗Mn(C)) = Thyp(Mn(C) ∗Mn(C)).
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Thm (Rørdam-M): Tfin(Mn(C) ∗Mn(C)) = Thyp(Mn(C) ∗Mn(C)).

Cor: CEP pos iff Thyp(Mn(C) ∗Mn(C)) = T (Mn(C) ∗Mn(C)), ∀ n ≥ 3.

Further results: Let A be a unital C ∗-algebra.

• If Mn(A) is a quotient of Mn(C) ∗Mn(C), then A generated by n2 elem.

• If A gen by n− 1 unitaries, then Mn(A) is a quotient of Mn(C) ∗Mn(C).

As unital separable Z-stable C∗-alg are singly generated (Thiel-Winter),
we deduce: If A is a simple unital inf dim AF-algebra, then Mn(A) is a
quotient of Mn(C) ∗Mn(C), n ≥ 3.

Thm (Rørdam-M): Each metrizable Choquet simplex is affinely homeo to
a face of T (Mn(C) ∗Mn(C)), n ≥ 3.

(Open) question: Is T (Mn(C) ∗Mn(C)) the Poulsen simplex?
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Further connections: Analysis of quantum correlations and CEP

• Γ := Zk ∗ Zk ∗ · · · ∗ Zk , n copies, n, k ≥ 2.

• C ∗(Γ) = C ∗(qj ,x | qj ,x = q∗j ,x = q2
j ,x ,

∑k
j=1 qj ,x = 1).

(Schafhauser, AIM ‘21): For all n, k ≥ 2, we have

Tfin(C ∗(Γ)) = Thyp(C ∗(Γ))).

Definition: A ”correlation” [(p(i , j | x , y)] is synchronous if ∀ 1 ≤ x ≤ n,
p(i , j | x , x) = 0 whenever i 6= j .

Theorem (Paulsen-Severini-Stalke-Todorov-Winter ’16):

C s
qc(n, k) =

{[
τ(qj ,xqi ,y )

]
(i ,x ;j ,y)

| τ ∈ T (C ∗(Γ))
}

C s
q (n, k) =

{[
τ(qj ,xqi ,y )

]
(i ,x ;j ,y)

| τ ∈ Tfin(C ∗(Γ))
}
.
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Set Cqa(n, k) := Cq(n, k).

(Kim-Paulsen-Schafhauser ’17): C s
qa(n, k) = C s

q (n, k).

Theorem (Kim-Paulsen-Schafhauser ’17, Ozawa ’13): TFAE

(1) Connes Embedding Problem has positive answer.

(2) C s
qa(n, k) = C s

qc(n, k), ∀n, k ≥ 2.

(3) Tsirelson’s conjecture is true, i.e., Cqa(n, k) = Cqc(n, k), ∀n, k ≥ 2.

Theorem (Fritz/Junge et. al. ’09):

Cqa(n, k) =
{[
ϕ(qj ,x ⊗ qi ,y )

]
: ϕ state on C ∗(Γ)⊗min C ∗(Γ)

}
.

Cqc(n, k) =
{[
ϕ(qj ,x ⊗ qi ,y )

]
: ϕ state on C ∗(Γ)⊗max C

∗(Γ)
}

.

• A := C ∗(Γ)⊗min C ∗(Γ) is RFD [⇒ Sfin(A)
dense
⊆ S(A)].
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I Posted on arXiv, Jan 2020: MIP∗ = RE, Ji, Natarajan, Vidick,
Wright, Yuen, 165 pp.

Proving that the complexity class MIP∗ (quantum version of complexity
class MIP=languages with a Multiprover Interactive Proof) contains an
undecidable language, they conclude that Tsirelson’s Conjecture is false!

New version (with corrections) 206 pp., posted on arXiv, Sept 2020.

I Further recent applications of/connections to factorizability:

Gangbo-Jeckel-Nam-Shlyakhtenko, May 2021: “Duality for optimal
couplings in free probability”.

Magdalena Musat Quantum channels, Factoriz, T (Mn ∗ Mn) COSy-Ottawa, 2022 18 / 18



I Posted on arXiv, Jan 2020: MIP∗ = RE, Ji, Natarajan, Vidick,
Wright, Yuen, 165 pp.

Proving that the complexity class MIP∗ (quantum version of complexity
class MIP=languages with a Multiprover Interactive Proof) contains an
undecidable language, they conclude that Tsirelson’s Conjecture is false!

New version (with corrections) 206 pp., posted on arXiv, Sept 2020.

I Further recent applications of/connections to factorizability:

Gangbo-Jeckel-Nam-Shlyakhtenko, May 2021: “Duality for optimal
couplings in free probability”.

Magdalena Musat Quantum channels, Factoriz, T (Mn ∗ Mn) COSy-Ottawa, 2022 18 / 18


