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Central theme: A certain class of completely positive maps (factorizable
maps), introduced by C. Anantharaman-Delaroche ‘05.

Their study led to investigating the convex structure of the set of unital
quantum channels, interesting applications in the analysis of QIT (e.g.,
settling in the negative the Asymptotic Quantum Birkhoff Conjecture) and
revealed infinite dim phenomena therein, connections to/reformulations of
the Connes Embedding Problem, and recently, through a new view-point,
some interesting problems in operator algebras.
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For n > 2, consider following sets of maps T : M,(C) — M,(C):

c CPT(n)

FM(n) € UCPT(n) ~
< UCP(n)

4
all compact and convex subsets of C"".
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» (Choi '73): Let T : M,(C) — Mp(C) linear. Then
d d
T € CPT(n) <= 3A1,...,Ag € Ma(C) : Tx =D AfxA;, > AAT = .
j=1 j=1
d d
T €UCP(n) <= 3A1,..., Ag € Ma(C): Tx =D AixA;, Y ATA; =1,
j=1 j=1

When {Aq,...,Aq} lin independent, d is called the Choi-rank of T.
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When {Aq,...,Aq} lin independent, d is called the Choi-rank of T.

Thm (Choi '75): T € 0.(CPT(n)) <= {A/A; 7J=1 lin independent.

Respectively, T € 0.(UCP(n)) <— {A}*Aj}f{j:l lin independent.
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T € CPT(n) <= 3A1,...,Ag € Ma(C): Tx =Y AfxA;, Y AAT =
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d d
T €UCP(n) <= 3A1,..., Ag € Ma(C): Tx=>_ AixA;, Y ATA; =
j=1 j=1

When {Aq,...,Aq} lin independent, d is called the Choi-rank of T.

Thm (Choi '75): T € 0.(CPT(n)) <= {A/A; ?le lin independent.

Respectively, T € 0.(UCP(n)) <— {A}*Aj}f{j:l lin independent.

Thm (Landau-Streater '93): T € 0.(UCPT(n)) <= {ATA; @ AjAT}i;
lin independent.
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» (Choi '73): Let T : M,(C) — Mp(C) linear. Then
d d
T € CPT(n) <= 3A1,...,Ag € Ma(C): Tx =Y AfxA;, Y AAT =
Jj=1 J=1
d d
T €UCP(n) <= 3A1,..., Ag € Ma(C): Tx=>_ AixA;, Y ATA; =
j=1 j=1

When {Aq,...,Aq} lin independent, d is called the Choi-rank of T.

Thm (Choi '75): T € 0.(CPT(n)) <= {A/A; ?le lin independent.
Respectively, T € 0.(UCP(n)) <— {A}*Aj}f{j:l lin independent.

Thm (Landau-Streater '93): T € 0.(UCPT(n)) <= {ATA; @ AjAT}i;
lin independent.

Hence 9.(UCPT(n)) 2 (9e(UCP(n)) U 9e(CPT(n))) N UCPT(n).

Question: Are these sets equal?
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Definition (Anantharaman-Delaroche ‘05): A unital quantum channel
T: M,(C) — M,(C) is called factorizable if 3 vN alg (N, ) with n.f.
tracial state and unital *-homs o, 8: M,(C) - M,(C)®@ N: T = * o a.

M,(C) L M,(C)
N A
“ B* =B~ oEp(my(c)
Mn(C) @ N

» «, [ are injective (thus embeddings) and trace-preserving. Since unital
embeddings of M,(C) into a vN alg are unitarily equiv, can take

B(x)=x®@1y, oax)=u"B(x)u, x& My(C),
for some u € Mp(C) ® N unitary; N can be taken ll;-vN alg (even factor).
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» «, [ are injective (thus embeddings) and trace-preserving. Since unital
embeddings of M,(C) into a vN alg are unitarily equiv, can take

B(x)=x®@1y, oax)=u"B(x)u, x& My(C),
for some u € Mp(C) ® N unitary; N can be taken ll;-vN alg (even factor).

Theorem (Haagerup-M '11): T : M,(C) — M,(C) is a factorizable
quantum channel iff 3 (N, 1) finite vN algebra (called ancilla) and a
unitary u € M,(C) ® N: Tx = (idy,(c) ® Tv)(v*(x @ 1n)u), x € My(C).
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Def/Thm (Haagerup-M '11): T : M,(C) — M,(C) is a factorizable
quantum channel iff 3 (N, 7y) finite vN algebra (called ancilla) and a
unitary u € M,(C) ® N: Tx = (idy,c) ® Tv)(v*(x @ 1n)u), x € My(C).

» (R. Werner): Factorizable channels are obtained by coupling the input
system to a maximally mixed ancillary one, executing a unitary rotation on
the combined system, and tracing out the ancilla.
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Then FM(n) is convex and closed.
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unitary u € M,(C) ® N: Tx = (idy,c) ® Tv)(v*(x @ 1n)u), x € My(C).

» (R. Werner): Factorizable channels are obtained by coupling the input
system to a maximally mixed ancillary one, executing a unitary rotation on
the combined system, and tracing out the ancilla.

» Automorphisms of M,(C) are factorizable.

Let FM(n) denote all factorizable quantum channels on M,(C), n > 2.
Then FM(n) is convex and closed.

Proposition (Haagerup-M '11): Let T € UCPT(n), with canonical form

Tx = ZijAj, x € M,(C).

If d := Choi-rank(T) > 2 and {AfA; }1<,’J lin indep, then T ¢ FM(n).
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» (Kiimmerer '83): UCPT(2) = conv(Aut(M,(C))). However,
UCPT(n) 2 conv(Aut(M,(C))), n>3,

cf. (Kiimmerer '86, Landau-Streater '93, Kiimmerer-Maasen '87).
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» (Kiimmerer '83): UCPT(2) = conv(Aut(M,(C))). However,
UCPT(n) 2 conv(Aut(M,(C))), n>3,

cf. (Kiimmerer '86, Landau-Streater '93, Kiimmerer-Maasen '87).

» Asymptotic Quantum Birkhoff Conj (Smolin-Verstraete-Winter '05):
Any T € UCPT(n), n > 3, satisfies
k k
inm dcb< T,conv(Aut(®/\/I,,(C)))) =0.
— 00 i=

1 i=1
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» Asymptotic Quantum Birkhoff Conj (Smolin-Verstraete-Winter '05):
Any T € UCPT(n), n > 3, satisfies

lim dcb(
k—00 ;

k
=

k
T, conv(Aut(@ I\/I,,(C)))) =0.

1 i=1

Theorem (Haagerup-M '11): Let T € UCPT(n), n > 3. For k > 1,

oo (é TF (ém(@))) > da(T, FM(n)).
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» (Kiimmerer '83): UCPT(2) = conv(Aut(M,(C))). However,
UCPT(n) 2 conv(Aut(M,(C))), n>3,

cf. (Kiimmerer '86, Landau-Streater '93, Kiimmerer-Maasen '87).

» Asymptotic Quantum Birkhoff Conj (Smolin-Verstraete-Winter '05):
Any T € UCPT(n), n > 3, satisfies

lim dcb(
k—00 ;

k
=

k
T, conv(Aut(@ I\/I,,(C)))) =0.

1 i=1

Theorem (Haagerup-M '11): Let T € UCPT(n), n > 3. For k > 1,
K K
deb <® T,F <®M,,((C)>> > dep(T, FM(n)).
i=1 i=1

» If T ¢ FM(n)), then dep(T , FM(n)) > 0.
As conv(Aut(M,(C))) € FM(n), any non-factoriz channel fails AQBC.
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» For T € UCPT(n), Choi-rank(T) =1 iff T € Aut(M,(C)).
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» For T € UCPT(n), Choi-rank(T) =1 iff T € Aut(M,(C)).
Set 05(CPT(n)) = 0e(CPT(n)) \ Aut(M,(C)), and similarly 95(UCP(n)).
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» For T € UCPT(n), Choi-rank(T) =1 iff T € Aut(M,(C)).
Set 05(CPT(n)) = 0e(CPT(n)) \ Aut(M,(C)), and similarly 95(UCP(n)).

Cor: T € (9:(UCP(n)) Ud:(CPT(n))) NUCPT(n) = T & FM(n).

Magdalena Musat Quantum channels, Factoriz, T(M, * Mp) COSy-Ottawa, 2022 7/18



» For T € UCPT(n), Choi-rank(T) =1 iff T € Aut(M,(C)).
Set 05(CPT(n)) = 0e(CPT(n)) \ Aut(M,(C)), and similarly 95(UCP(n)).

Cor: T € (05(UCP(n)) U9Z(CPT(n))) NUCPT(n) = T ¢ FM(n).

Remark: Not easy to characterize non-factorizability in terms of the
convex structure of UCPT(n):

@ 9.(UCPT(n)) \ ((0e(UCP(n)) U de(CPT(n))) NUCPT(n)) can
contain both factorizable and non-factorizable maps.
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» For T € UCPT(n), Choi-rank(T) =1 iff T € Aut(M,(C)).
Set 05(CPT(n)) = 0e(CPT(n)) \ Aut(M,(C)), and similarly 95(UCP(n)).

Cor: T € (05(UCP(n)) U9Z(CPT(n))) NUCPT(n) = T ¢ FM(n).
Remark: Not easy to characterize non-factorizability in terms of the

convex structure of UCPT(n):

@ 9.(UCPT(n)) \ ((0e(UCP(n)) U de(CPT(n))) NUCPT(n)) can
contain both factorizable and non-factorizable maps.

» T € 95(UCPT(n)), Choi-rank > n = T ¢ 9%(UCP(n)) U 05(CPT(n)).
» (Ohno '09): 3T € 95(UCPT(3)), Choi-rank 4; (H-M-R): T ¢ FM(3).
» (H-M-R '21): Explicit family T, € 93(UCPT(3)) N FM(3), Choi-rank 4.
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A class of UCPT(n) maps constructed in (Haagerup-M-Ruskai '21):
Givenn>3, Vi,...,V,elUU(n—1)and t € [-1,1], t # —1/(n— 1), set

_ 1 —m+1 t 0 m—1
Am—\/ﬁs <0 Vm>5 5 1§m§n

Here S is the canonical shift on C".
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A class of UCPT(n) maps constructed in (Haagerup-M-Ruskai '21):
Givenn>3, Vi,...,V,elUU(n—1)and t € [-1,1], t # —1/(n— 1), set

_ 1 —m+1 t 0 m—1
Am—\/ﬁs <0 Vm)s 5 1§m§n

Here S is the canonical shift on C".

» Can verify Y 0 A* Ap =1, =>" _ AnA%,. Thus, if

Tx =) ArxAm, x€ M,(C),

m=1

then T € UCPT(n). Moreover, the Choi-rank of T is n.
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Theorem A (H-M-R ‘21): For n >3 and t € (—1,1), t # —1/(n— 1),
there exists W = W* € U(n — 1) such thatif V4 =... =V, = W and
{Am}n_q are as above, then {A%A;} linearly independent. Hence

fj=1
T € 9;(UCP(n)) N 0%(CPT(n)),

thus T is non-factorizable.

Proof: Lots of linear algebra.
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Theorem A (H-M-R ‘21): For n >3 and t € (—1,1), t # —1/(n— 1),

there exists W = W* € U(n— 1) such thatif Vi =... =V, = W and

{Am}5—1 are as above, then {A7A;}7;_; linearly independent. Hence
T € 02(UCP(n)) N o;(CPT(n)),

thus T is non-factorizable.

Proof: Lots of linear algebra.
Theorem B (H-M-R ‘21): For n >3 and t € (—1,1), t # —1/(n— 1),
the set of n-tuples (V1,..., Vi) € U(n—1)" such that {A7A;}7;_, is

linearly indep has co-measure 0 w.r.t. Haar measure. Hence almost all
quantum channels T arising in this way are non-factorizable.

Proof: Theorem A + Algebraic Geometry.
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Infinite dimensional phenomena in QIT:
Question: Do we need (inf dim) vN algs to describe factorizable channels?

» For a factorizable channel, minimal ancilla (and its size) not unique.
E.g., consider the completely depolarizing channel S,, n > 2

Sn(x): =trp(x)1, = /u( ) u'xudp(u), x € M,(C).

It's factorizable, and possible ancillas are: C™, M,(C), but also (a corner
of ) the reduced free product von Neumann alg (M,(C), tr,) * (M,(C), tr,).
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E.g., consider the completely depolarizing channel S,, n > 2

Sn(x): =trp(x)1, = /u( ) u'xudp(u), x € M,(C).

It's factorizable, and possible ancillas are: C™, M,(C), but also (a corner
of ) the reduced free product von Neumann alg (M,(C), tr,) * (M,(C), tr,).

Let F M;in(n) = factoriz channels on M,(C) admitting a finite dim ancilla.
Theorem (Rgrdam-M ‘19): FMjsin(n) is not closed, whenever n > 11.

Moreover, for each such n, there exist factorizable quantum channels on
M, (C) which do require infinite dimensional (even type Il;) ancilla.
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Theorem (Rgrdam-M '19): F Mg in(n) is not closed, whenever n > 11.

Moreover, for each such n, there exist factorizable quantum channels on

M, (C) which do require infinite dimensional (even type Il1) ancilla.

Proof: Consider following sets of n x n complex matrices, n > 2:

Gan(n) = {[T(ufu,-)] S u1,...,Up unitaries in arbitrary
Al finite dimens C*-alg (.A,T)},

G(n) = {[T(u}ku;)] D ui,...,Up unitaries in arbitrary finit
vN alg (M, 7)¢.

» (Rgrdam-M): Ggy,(n) is convex Vn > 2, but not closed whenever n > 11.

Magdalena Musat Quantum channels, Factoriz, T(M, * Mp) COSy-Ottawa, 2022

11/18



Theorem (Rgrdam-M '19): F Mg in(n) is not closed, whenever n > 11.
Moreover, for each such n, there exist factorizable quantum channels on
M, (C) which do require infinite dimensional (even type Il;) ancilla.

Proof: Consider following sets of n x n complex matrices, n > 2:

Gan(n) = {[T(ufu,-)] S u1,...,Up unitaries in arbitrary

Al finite dimens C*-alg (.A,T)},

G(n) = {[T(u}ku;)] > u1,...,Up unitaries in arbitrary finit
vN alg (M, 7)¢.
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Note: If B € M,(C) correlation matrix (pos definite, diag entries equal 1),
the Schur multiplier Tg € UCPT (n).
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Theorem (Rgrdam-M '19): F Mg in(n) is not closed, whenever n > 11.
Moreover, for each such n, there exist factorizable quantum channels on
M, (C) which do require infinite dimensional (even type Il;) ancilla.

Proof: Consider following sets of n x n complex matrices, n > 2:

Gan(n) = {[T(ufu,-)] S u1,...,Up unitaries in arbitrary
Al finite dimens C*-alg (A,T)},
G(n) = {[T(u}ku;)] > u1,...,Up unitaries in arbitrary finit
vN alg (I\/I,T)p}.

» (Rgrdam-M): Ggy,(n) is convex Vn > 2, but not closed whenever n > 11.

Note: If B € M,(C) correlation matrix (pos definite, diag entries equal 1),
the Schur multiplier Tg € UCPT(n). (Ricard '08): If B has real entries,
then Tpg is factorizable.

» (Haagerup-M "11): A Schur multiplier Tg is factorizable iff B € G(n).
Furthermore, Tg € F Mgy (n) iff B € Ggn(n).

The map B — Tg is an affine homeo, hence theorem follows. [
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(Rgrdam-M '20): A new view-point on factorizable channels, leading to
further connections (and interesting open problems in C*-algebras):

» FM(n) is parametrized by simplex of tracial states T(M,(C) x M,(C)).
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(Rgrdam-M '20): A new view-point on factorizable channels, leading to
further connections (and interesting open problems in C*-algebras):

» FM(n) is parametrized by simplex of tracial states T(M,(C) x M,(C)).
More precisely, if 7 € T(M,(C) x M,(C)), let

CT(iaj; k7£) = nT(LZ(ekZ)* Ll(el:l'))) 1< iaja kvg <n,

where 1,12: M,(C) — M,(C) x M,(C) are the canonical inclusions. Then
C; € M2(C) is positive, hence it is the Choi matrix of some c.p. lin map
T: : Mp(C) — M,(C), which turns out to be a factoriz quantum channel!
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(Rgrdam-M '20): A new view-point on factorizable channels, leading to
further connections (and interesting open problems in C*-algebras):

» FM(n) is parametrized by simplex of tracial states T(M,(C) x M,(C)).
More precisely, if 7 € T(M,(C) x M,(C)), let

CT(iaj; k7£) = nT(LZ(ekZ)* Ll(el:l'))) 1< iaja kvg <n,

where 1,12: M,(C) — M,(C) x M,(C) are the canonical inclusions. Then
C; € M2(C) is positive, hence it is the Choi matrix of some c.p. lin map
T: : Mp(C) — M,(C), which turns out to be a factoriz quantum channel!

In fact, the map ®: T(M,(C) x M,(C)) — FM(n), 7+ &(7) := T, is an
affine continuous surjection, satisfying, moreover,

O( Thn(Mn(C) x M,y(C))) = FMgn(n),

where T, = tracial states that factor through finite dim. C*-alg.
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The affine cont surj ®: T(M,(C) x M,(C)) — FM(n),r — T,, satisfies

o O(Thn(Mp(C) x Mp(C))) = FMgn(n),

® &(Tin(Mn(C) * My(C))) = F Miin(n),

where Tg, = tracial states that factor through finite dim. C*-alg.
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The affine cont surj ®: T(M,(C) x M,(C)) — FM(n), T+ T, satisfies

o O(Thn(Mp(C) x Mp(C))) = FMgn(n),

® &(Tin(Mn(C) * My(C))) = F Miin(n),

where Tg, = tracial states that factor through finite dim. C*-alg.

Thm (Haagerup-M '15) Connes Embedding Problem (CEP) has positive

answer iff F Mgn(n) = FM(n), Vn > 3.

Question: What can we say about T, (M,(C) * Mp(C)) ?
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The affine cont surj ®: T(M,(C) x M,(C)) — FM(n), T+ T, satisfies

o O(Thn(Mp(C) x Mp(C))) = FMgn(n),

® &(Tin(Mn(C) * My(C))) = F Miin(n),

where Tg, = tracial states that factor through finite dim. C*-alg.

Thm (Haagerup-M '15) Connes Embedding Problem (CEP) has positive

answer iff F Mgn(n) = FM(n), Vn > 3.

Question: What can we say about T, (M,(C) * Mp(C)) ?
e (Exel-Loring '92): M,(C) *x M,(C) residually finite dim. (RFD)

e (Blackadar '85): M,(C) * M,(C) semi-projective.
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In general, given A = (sep) unital tracial C*-algebra, we have inclusions

Tiin(A) € Tan(A) € Tqa(A) € Tam(A) € Tuyp(A) € T(A),

where T,q(A) = quasi-diagonal traces, T.y,(A) = amenable (liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces 7 st 7-(A)"” — R¥).
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In general, given A = (sep) unital tracial C*-algebra, we have inclusions:

Tiin(A) € Tan(A) € Tqa(A) € Tam(A) € Tuyp(A) € T(A),

where T,q(A) = quasi-diagonal traces, T.y,(A) = amenable (liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces 7 st 7-(A)"” — R¥).

e CEP pos answer iff Ty, (A) = T(A), for all C*-alg A.

Reformulation of CEP: For all sep. unital tracial C*-algs (A, 7), there is
a unital trace- preserving *-hom ¢: A — [[72; My, /I*, for some k, > 1.
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In general, given A = (sep) unital tracial C*-algebra, we have inclusions:

Tiin(A) € Tan(A) € Tqa(A) € Tam(A) € Tuyp(A) € T(A),

where T,q(A) = quasi-diagonal traces, T.y,(A) = amenable (liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces 7 st 7-(A)"” — R¥).

e CEP pos answer iff Ty, (A) = T(A), for all C*-alg A.

Reformulation of CEP: For all sep. unital tracial C*-algs (A, 7), there is
a unital trace- preserving *-hom ¢: A — [[72; My, /I*, for some k, > 1.

e (N. Brown '06): 3 exact RFD C*-alg As.t. Tam(A) # Tuyp(A).
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In general, given A = (sep) unital tracial C*-algebra, we have inclusions:

Tiin(A) € Tan(A) € Tqa(A) € Tam(A) € Tuyp(A) € T(A),

where T,q(A) = quasi-diagonal traces, T.y,(A) = amenable (liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces 7 st 7-(A)"” — R¥).

e CEP pos answer iff Ty, (A) = T(A), for all C*-alg A.

Reformulation of CEP: For all sep. unital tracial C*-algs (A, 7), there is
a unital trace- preserving *-hom ¢: A — [[72; My, /I*, for some k, > 1.

e (N. Brown '06): 3 exact RFD C*-alg As.t. Tam(A) # Tuyp(A).

e Open if Tqq(A) = Tam(A). Strong pos results: Tikuisis-Winter-White,
Schafhauser, Gabe.
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In general, given A = (sep) unital tracial C*-algebra, we have inclusions:

Tiin(A) € Tan(A) € Tqa(A) € Tam(A) € Tuyp(A) € T(A),

where T,q(A) = quasi-diagonal traces, T.y,(A) = amenable (liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces 7 st 7-(A)"” — R¥).

e CEP pos answer iff Ty, (A) = T(A), for all C*-alg A.

Reformulation of CEP: For all sep. unital tracial C*-algs (A, 7), there is
a unital trace- preserving *-hom ¢: A — [[72; My, /I*, for some k, > 1.

e (N. Brown '06): 3 exact RFD C*-alg As.t. Tam(A) # Tuyp(A).

e Open if Tqq(A) = Tam(A). Strong pos results: Tikuisis-Winter-White,
Schafhauser, Gabe.

e A (weakly) semi-projective == T, (A) = Tqa(A)
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In general, given A = (sep) unital tracial C*-algebra, we have inclusions:

Tin(A) € Tin(A) € Taa(A) € Tam(A) € Tuyp(A) € T(A),
where T,q(A) = quasi-diagonal traces, T.y,(A) = amenable (liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces 7 st 7-(A)"” — R¥).

e CEP pos answer iff Ty, (A) = T(A), for all C*-alg A.

Reformulation of CEP: For all sep. unital tracial C*-algs (A, 7), there is
a unital trace- preserving *-hom ¢: A — [[72; My, /I*, for some k, > 1.
e (N. Brown '06): 3 exact RFD C*-alg As.t. Tam(A) # Tuyp(A).

e Open if Tqq(A) = Tam(A). Strong pos results: Tikuisis-Winter-White,
Schafhauser, Gabe.

e A (weakly) semi-projective == T, (A) = Tqa(A)
o (Hadwin-Shulman '17): 3 RFD C*-alg A s.t. Tgn(A) # Taa(A).
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In general, given A = (sep) unital tracial C*-algebra, we have inclusions:

Tin(A) € Tin(A) € Taa(A) € Tam(A) € Tuyp(A) € T(A),
where T,q(A) = quasi-diagonal traces, T.y,(A) = amenable (liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces 7 st 7-(A)"” — R¥).

e CEP pos answer iff Ty, (A) = T(A), for all C*-alg A.

Reformulation of CEP: For all sep. unital tracial C*-algs (A, 7), there is
a unital trace- preserving *-hom ¢: A — [[72; My, /I*, for some k, > 1.
e (N. Brown '06): 3 exact RFD C*-alg As.t. Tam(A) # Tuyp(A).

e Open if Tqq(A) = Tam(A). Strong pos results: Tikuisis-Winter-White,
Schafhauser, Gabe.

e A (weakly) semi-projective == T, (A) = Tqa(A)
o (Hadwin-Shulman '17): 3 RFD C*-alg A s.t. Tgn(A) # Taa(A).

Thm (Rgrdam-M '20): Tg,(M,(C)  Ms(C)) = Thyp(Ma(C) * M,(C)).
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Thm (Rgrdam-M): T, (Mn(C) * M, (C)) = Thyp(Mn(C) x M,y(C)).
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Thm (Rgrdam-M): T, (Mn(C) * M, (C)) = Thyp(Mn(C) x M,y(C)).

Cor: CEP pos iff Tyyp(Mn(C) % Ma(C)) = T(M,(C)  Mn(C)), ¥ n > 3.
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Thm (Rgrdam-M): T, (Mn(C) * M, (C)) = Thyp(Mn(C) x M,y(C)).

Cor: CEP pos iff Tyyp(Mn(C) % Ma(C)) = T(M,(C)  Mn(C)), ¥ n > 3.

Further results: Let A be a unital C*-algebra.
e If M,(A) is a quotient of M,(C) * M,(C), then A generated by n® elem.
e If A gen by n— 1 unitaries, then M,(A) is a quotient of M,(C) x M,(C).

As unital separable Z-stable C*-alg are singly generated (Thiel-Winter),
we deduce: If Ais a simple unital inf dim AF-algebra, then M,(A) is a

quotient of M,(C) * M,(C), n > 3.

COSy-Ottawa, 2022 15/18
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Thm (Rgrdam-M): T, (Mn(C) * M, (C)) = Thyp(Mn(C) x M,y(C)).

Cor: CEP pos iff Tyyp(Mn(C) % Ma(C)) = T(M,(C)  Mn(C)), ¥ n > 3.

Further results: Let A be a unital C*-algebra.
e If M,(A) is a quotient of M,(C) * M,(C), then A generated by n® elem.
e If A gen by n— 1 unitaries, then M,(A) is a quotient of M,(C) x M,(C).

As unital separable Z-stable C*-alg are singly generated (Thiel-Winter),
we deduce: If Ais a simple unital inf dim AF-algebra, then M,(A) is a

quotient of M,(C) * M,(C), n > 3.

Thm (Rgrdam-M): Each metrizable Choquet simplex is affinely homeo to
a face of T(M,(C) x M,(C)), n> 3.

(Open) question: Is T(M,(C) x M,(C)) the Poulsen simplex?
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Further connections: Analysis of quantum correlations and CEP

o[ =7y *xZyx---*Zk, ncopies, n, k > 2.

* * * k
o C*(MN) = C*(Gjx | Gix = G5 = T 2jo1 Gix = 1).
(Schafhauser, AIM ‘21): For all n, k > 2, we have

Ten(C*(1)) = Thyp(C7(I)))-
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Further connections: Analysis of quantum correlations and CEP

o[ =7y *xZyx---*Zk, ncopies, n, k > 2.

* * * k
o C*(MN) = C*(Gjx | Gix = G5 = T 2jo1 Gix = 1).
(Schafhauser, AIM ‘21): For all n, k > 2, we have

Ten(C*(1)) = Thyp(C7(I)))-

Definition: A "correlation” [(p(i,j | x,y)] is synchronous if V1 < x < n,
p(i,j | x,x) =0 whenever | # j.
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Further connections: Analysis of quantum correlations and CEP

o[ =7y *xZyx---*Zk, ncopies, n, k > 2.

* * * k
o C*(MN) = C*(Gjx | Gix = G5 = T 2jo1 Gix = 1).
(Schafhauser, AIM ‘21): For all n, k > 2, we have

Ten(C*(1)) = Thyp(C7(I)))-

Definition: A "correlation” [(p(i,j | x,y)] is synchronous if V1 < x < n,
p(i,j | x,x) =0 whenever i # j.

Theorem (Paulsen-Severini-Stalke-Todorov-Winter '16):
Coeln k) = {[(@ix@is)] ) | 7 € TIC(T)}
C;(n, k) = {[T(qjqu,-y)](iyx;j’y) | € Tﬁn(C*(r))}.
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Set Cga(n, k) := Cy(n, k).
(Kim-Paulsen-Schafhauser '17): Cg,(n, k) = C5(n, k).
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Set Cga(n, k) := Cy(n, k).
(Kim-Paulsen-Schafhauser '17): Cg,(n, k) = C5(n, k).
Theorem (Kim-Paulsen-Schafhauser '17, Ozawa '13): TFAE

(1) Connes Embedding Problem has positive answer.
(2) Csa(n, k) = Coc(n, k), Vn, k > 2.

(3) T5|relson s conJecture is true, i.e., Cga(n, k) = Cyc(n, k), Vn, k > 2.
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Set Cga(n, k) := Cy(n, k).
(Kim-Paulsen-Schafhauser '17): Cg,(n, k) = C5(n, k).
Theorem (Kim-Paulsen-Schafhauser '17, Ozawa '13): TFAE

(1) Connes Embedding Problem has positive answer.
(2) Csa(n, k) = Coc(n, k), Vn, k > 2.

(3) Tsirelson's conjecture is true, i.e., Cga(n, k) = Cyc(n, k), Vn, k > 2.

Theorem (Fritz/Junge et. al. '09):
o Cgqa(n, k) = {|:(,D(CU7X ® q,',y)} . o state on C*(I') ®min C*(r)}.

o Cqc(n k) = {[cp(qLX ® q,-7y)] : p state on C*(I') ®@max C*(F)}.

dense

o A= C*(I) @min C*(T) is RFD [= Sin(4) T S(A)].
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» Posted on arXiv, Jan 2020: MIP* = RE, Ji, Natarajan, Vidick,
Wright, Yuen, 165 pp.

Proving that the complexity class MIP* (quantum version of complexity
class MIP=languages with a Multiprover Interactive Proof) contains an
undecidable language, they conclude that Tsirelson’s Conjecture is false!

New version (with corrections) 206 pp., posted on arXiv, Sept 2020.
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» Posted on arXiv, Jan 2020: MIP* = RE, Ji, Natarajan, Vidick,
Wright, Yuen, 165 pp.

Proving that the complexity class MIP* (quantum version of complexity
class MIP=languages with a Multiprover Interactive Proof) contains an
undecidable language, they conclude that Tsirelson’s Conjecture is false!

New version (with corrections) 206 pp., posted on arXiv, Sept 2020.
» Further recent applications of /connections to factorizability:

Gangbo-Jeckel-Nam-Shlyakhtenko, May 2021: “Duality for optimal
couplings in free probability”.
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