

Wold decomposition on self-similar graphs

Boyu Li

University of Waterloo

COSy 2022
May 30th, 2022
Joint work with Dilian Yang

Background and Motivation

Theorem (Wold-decomposition Theorem)

Every isometry $V \in \mathcal{B}(\mathcal{H})$ can be decomposed as $V = U \oplus S^{(\alpha)}$ where U is unitary, and $S^{(\alpha)}$ is a direct sum of α -copies of the unilateral shift.

Background and Motivation

Theorem (Wold-decomposition Theorem)

Every isometry $V \in \mathcal{B}(\mathcal{H})$ can be decomposed as $V = U \oplus S^{(\alpha)}$ where U is unitary, and $S^{(\alpha)}$ is a direct sum of α -copies of the unilateral shift.

The Wold-decomposition theorem is an extremely useful theorem in operator theory. For example, it leads to Coburn's theorem:

Theorem (Coburn, 1967)

Let V be any isometry that is not unitary. Then $C^(V) = \overline{\text{Alg}}\{V, V^*\}$ is isometrically isomorphic to $C^*(S)$.*

Background and Motivation

Generalizations?

Background and Motivation

Generalizations?

Theorem (Słociński 1980)

A pair of doubly commuting isometries S_1, S_2 decomposes into a direct sum of four components: unitary-unitary, unitary-pure, pure-unitary, and pure-pure. In particular, the pure-pure component is equivalent to a direct sum of the bishift on $\ell^2(\mathbb{N}^2)$.

Background and Motivation

Generalizations?

Theorem (Słociński 1980)

A pair of doubly commuting isometries S_1, S_2 decomposes into a direct sum of four components: unitary-unitary, unitary-pure, pure-unitary, and pure-pure. In particular, the pure-pure component is equivalent to a direct sum of the bishift on $\ell^2(\mathbb{N}^2)$.

Theorem

A family of row isometries $\{V_1, \dots, V_n\}$ decomposes as a direct sum of row unitaries and non-commutative shifts.

Background and Motivation

Generalizations?

Theorem (Słociński 1980)

A pair of doubly commuting isometries S_1, S_2 decomposes into a direct sum of four components: unitary-unitary, unitary-pure, pure-unitary, and pure-pure. In particular, the pure-pure component is equivalent to a direct sum of the bishift on $\ell^2(\mathbb{N}^2)$.

Theorem

A family of row isometries $\{V_1, \dots, V_n\}$ decomposes as a direct sum of row unitaries and non-commutative shifts.

Goal: Study Wold decomposition for “nice” isometric representations of semigroups.

Background and Motivation

Definition

The odometer semigroup \mathbb{O}_n is the unital semigroup generated by n free generators v_1, \dots, v_n and an additional generator w such that

$$wv_k = \begin{cases} v_{k+1}, & \text{if } 1 \leq k \leq n-1; \\ v_1w, & \text{if } k = n. \end{cases}$$

Definition

A Nica-covariant isometric representation of \mathbb{O}_n is defined to be an isometry W and a row isometry $\{V_1, \dots, V_n\}$ such that $W^*V_1 = V_nW^*$ and

$$WV_k = \begin{cases} V_{k+1}, & \text{if } 1 \leq k \leq n-1; \\ V_1W, & \text{if } k = n. \end{cases}$$

Background and Motivation

Theorem (L. 2021)

An isometric Nica-covariant representation $\{W, V_1, \dots, V_n\}$ of \mathbb{O}_n decomposes into a direct sum of four components: unitary-row unitary, unitary-pure row isometry, pure-row unitary, and pure-pure row isometry.

In particular, the pure-pure row isometry component is equivalent to a direct sum of the left-regular representation of \mathbb{O}_n on $\ell^2(\mathbb{O}_n)$.

Self-Similar Graph

Definition

Let E be a directed graph. An automorphism of E is a bijective map $\pi : E^0 \rightarrow E^0$ and $E^1 \rightarrow E^1$ such that

$$\pi \circ r = r \circ \pi \text{ and } \pi \circ s = s \circ \pi.$$

A P -action on E is defined as a homomorphism $P \rightarrow \text{Aut}(E)$. A self-similar action also encodes an “ E -action on P ”.

Self-Similar Graph

Definition

Let E be a directed graph and P be a semigroup. A self-similar action of P on E consists of

- ① A P -action map denoted by $P \times E^* \rightarrow E^*$, $(p, \mu) \mapsto p \cdot \mu$
- ② A restriction map denoted by $P \times E^* \rightarrow P$, $(p, \mu) \mapsto p|_\mu$

In addition of the following properties:

- ③ $p \cdot (\mu\nu) = (p \cdot \mu)(p|_\mu \cdot \nu)$ for all $p \in P, \mu, \nu \in E^*$ with $s(\mu) = r(\nu)$.
- ④ $p|_v = p$ for all $p \in P, v \in E^0$;
- ⑤ $p|_{\mu\nu} = p|_\mu|_\nu$ for all $p \in P, \mu, \nu \in E^*$ with $s(\mu) = r(\nu)$;
- ⑥ $1_P|_\mu = 1_P$ for all $\mu \in E^*$;
- ⑦ $(pq)|_\mu = p|_{q \cdot \mu} q|_\mu$ for all $p, q \in P, \mu \in E^*$.

In this case, E is also called a self-similar graph over P , or (P, E) a self-similar graph.

Self-Similar Graph

Every self-similar graph is associated with a semigroupoid structure.

Definition

Let (P, E) be a self-similar graph. We define the self-similar product semigroupoid to be $E^* \bowtie P = \{(\mu, p) : \mu \in E^*, p \in P\}$, where the multiplication is given by:

$$(\mu, p) \cdot (\nu, q) = (\mu(p \cdot \nu), p|_\nu q), \text{ if } s(\mu) = r(p \cdot \nu).$$

Note: In particular, if E is a single vertex graph with n edges, then $E^* \bowtie P$ becomes a semigroup, which coincides with a Zappa-Sz  p product semigroup $\mathbb{F}_n^+ \bowtie P$ (Brownlowe et. al.).

Self-Similar Graph

Example

The odometer semigroup \mathbb{O}_n is a self-similar product semigroup where E has single vertex and n edges, and $P = \mathbb{N}$. The \mathbb{N} -action map is defined as $1 \cdot e_i = e_{i+1}$ and the \mathbb{N} -restriction map is given by

$$1|_{e_i} = \begin{cases} 0, & \text{if } 1 \leq i \leq n-1, \\ 1, & \text{if } i = n. \end{cases}$$

Self-Similar Graph

Example

The Baumslag-Solitar monoids $\text{BS}^+(n, m)$ is defined as

$$\text{BS}^+(n, m) = \langle a, b \mid a^n b = b a^m \rangle.$$

Notice that the elements $\{b, ab, \dots, a^{n-1}b\}$ are free in the semigroup, and therefore generate a copy of \mathbb{F}_n^+ . We can realize it as a self-similar product semigroup where E has single vertex and n edges, and $P = \mathbb{N}$. The \mathbb{N} -action map is defined as $1 \cdot e_i = e_{i+1}$ and the \mathbb{N} -restriction map is given by

$$1|_{e_i} = \begin{cases} 0, & \text{if } 1 \leq i \leq n-1, \\ 1, & \text{if } i = n. \end{cases}$$

Here, we can identify $e_i = a^{i-1}b$ in the graph E and $1 = a$ in \mathbb{N} .

Representations of Self-Similar Graph

Definition

Let E be a directed graph. A Toeplitz-Cuntz-Kreiger (TCK) family is given by $\mathcal{S} := \{S_\mu : \mu \in E\}$ such that:

- ① $\{S_v\}$ are pairwise orthogonal projections.
- ② For each $e \in E^1$, $S_e^* S_e = S_{s(e)}$.
- ③ For each $v \in E^0$,

$$\sum_{r(e)=v} S_e S_e^* \leq S_v.$$

We say this family is a Cuntz-Kreiger (CK) family if the last condition is replaced by

$$\sum_{r(e)=v} S_e S_e^* = S_v, \text{ for all } v \in E^0. \quad (\text{CK})$$

Definition

A *Toeplitz representation* of a self-similar graph (P, E) consists of an isometric representation \mathcal{V} of P and a TCK family \mathcal{S} of E , such that

Definition

A Toeplitz representation of a self-similar graph (P, E) consists of an isometric representation \mathcal{V} of P and a TCK family \mathcal{S} of E , such that

- ① For all $p \in P$ and $\mu \in E^*$,

$$V_p S_\mu = S_{p \cdot \mu} V_{p|_\mu} \quad (1)$$

Representations of Self-Similar Graph

Definition

A Toeplitz representation of a self-similar graph (P, E) consists of an isometric representation \mathcal{V} of P and a TCK family \mathcal{S} of E , such that

- ① For all $p \in P$ and $\mu \in E^*$,

$$V_p S_\mu = S_{p \cdot \mu} V_{p|_\mu} \quad (1)$$

- ② For all $p \in P$ and $\mu \in E^*$,

$$V_p^* S_{p \cdot \mu} = S_\mu V_{p|_\mu}^* \quad (2)$$

“Left-regular” representations

An archetypal example of a Toeplitz representation is the “left-regular” representation.

Example

Consider $\mathcal{K} = \ell^2(E^* \times P)$ where we use $\{\delta_{\mu,p} : \mu \in E^*, p \in P\}$ to denote its orthonormal basis. For each $q \in P$, define

$$V_q \delta_{\mu,p} = \delta_{q \cdot \mu, q|_{\mu} p}.$$

For each $\nu \in E^i$ ($i = 0, 1$), define

$$S_{\nu} \delta_{\mu,p} = \begin{cases} \delta_{\nu \mu, p}, & \text{if } s(\nu) = r(\mu), \\ 0, & \text{if otherwise.} \end{cases}$$

Then $(\mathcal{S}, \mathcal{V})$ defines a Toeplitz representation of the self-similar graph.

Note: This representation is not irreducible.

“Left-regular” representations - continued

Example

For each $v \in E^0$, let

$$\mathcal{K}_v = \overline{\text{span}}\{S_\mu V_p \delta_{v,e} : \mu \in E^*, p \in P\} = \overline{\text{span}}\{\delta_{\mu,p} : \mu \in E^*, p \in P, s(\mu) = p \cdot v\}.$$

One can verify that \mathcal{K}_v reduces the left regular representation $(\mathcal{V}, \mathcal{S})$. We shall use the notation $(\lambda_v^P, \lambda_v^E)$ to denote the restriction of $(\mathcal{V}, \mathcal{S})$ on \mathcal{K}_v . A representation of a self-similar graph is called left regular if it is a direct sum of amplifications of these λ .

Wold Decomposition

The Wold decomposition for TCK family has been known in the literature.

Theorem

Let \mathcal{S} be a TCK family of a directed graph E on a Hilbert space \mathcal{H} . Then \mathcal{H} decomposes as $\mathcal{H} = \mathcal{H}_C \oplus (\bigoplus_{v \in E^0} \mathcal{H}_v)$, under which \mathcal{S} is decomposed as $\mathcal{S} = \mathcal{T} \oplus \left(\bigoplus_{v \in E^0} L_{E,v}^{(\alpha_v)} \right)$. Here,

- On \mathcal{H}_C , \mathcal{T} is a CK family.
- On each \mathcal{H}_v , the restriction is an amplification of the “shift operators”.

Moreover, let $\mathcal{W}_v = (S_v - \sum_{r(e)=v} S_e S_e^*) \mathcal{H}$. We have $\mathcal{H}_v = \bigoplus_{\mu \in E^*} S_\mu \mathcal{W}_v$, and $\alpha_v = \dim \mathcal{W}_v$.

Wold Decomposition

For each $v \in E^0$, define its orbit $O_v = \{p \cdot v : p \in P\}$. Since we assumed E is finite and P act by automorphisms, $\{O_v\}$ is a partition of E^0 (and defines an equivalence relation).

Wold Decomposition

For each $v \in E^0$, define its orbit $O_v = \{p \cdot v : p \in P\}$. Since we assumed E is finite and P act by automorphisms, $\{O_v\}$ is a partition of E^0 (and defines an equivalence relation).

Theorem (L.-Yang)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (P, E) on a Hilbert space \mathcal{H} . Let \mathcal{W}_v , \mathcal{H}_v , \mathcal{H}_C as defined previously. Then

- ① \mathcal{H}_C reduces \mathcal{V} .

Wold Decomposition

For each $v \in E^0$, define its orbit $O_v = \{p \cdot v : p \in P\}$. Since we assumed E is finite and P act by automorphisms, $\{O_v\}$ is a partition of E^0 (and defines an equivalence relation).

Theorem (L.-Yang)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (P, E) on a Hilbert space \mathcal{H} . Let \mathcal{W}_v , \mathcal{H}_v , \mathcal{H}_C as defined previously. Then

- ① \mathcal{H}_C reduces \mathcal{V} .
- ② For each O_v , $\mathcal{W}_{[v]} = \bigoplus_{u \in O_v} \mathcal{W}_u$ reduces \mathcal{V} .

Wold Decomposition

For each $v \in E^0$, define its orbit $O_v = \{p \cdot v : p \in P\}$. Since we assumed E is finite and P act by automorphisms, $\{O_v\}$ is a partition of E^0 (and defines an equivalence relation).

Theorem (L.-Yang)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (P, E) on a Hilbert space \mathcal{H} . Let \mathcal{W}_v , \mathcal{H}_v , \mathcal{H}_C as defined previously. Then

- ① \mathcal{H}_C reduces \mathcal{V} .
- ② For each O_v , $\mathcal{W}_{[v]} = \bigoplus_{u \in O_v} \mathcal{W}_u$ reduces \mathcal{V} .
- ③ For each O_v and each $m \geq 0$, $\bigoplus_{|\mu|=m} V_\mu \mathcal{W}_{[v]}$ reduces \mathcal{V} .

Wold Decomposition

For each $v \in E^0$, define its orbit $O_v = \{p \cdot v : p \in P\}$. Since we assumed E is finite and P act by automorphisms, $\{O_v\}$ is a partition of E^0 (and defines an equivalence relation).

Theorem (L.-Yang)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (P, E) on a Hilbert space \mathcal{H} . Let \mathcal{W}_v , \mathcal{H}_v , \mathcal{H}_C as defined previously. Then

- ① \mathcal{H}_C reduces \mathcal{V} .
- ② For each O_v , $\mathcal{W}_{[v]} = \bigoplus_{u \in O_v} \mathcal{W}_u$ reduces \mathcal{V} .
- ③ For each O_v and each $m \geq 0$, $\bigoplus_{|\mu|=m} V_\mu \mathcal{W}_{[v]}$ reduces \mathcal{V} .
- ④ For each O_v , $\mathcal{H}_{[v]} = \bigoplus_{u \in O_v} \mathcal{H}_u$ reduces \mathcal{V} .

Wold Decomposition

For each $v \in E^0$, define its orbit $O_v = \{p \cdot v : p \in P\}$. Since we assumed E is finite and P act by automorphisms, $\{O_v\}$ is a partition of E^0 (and defines an equivalence relation).

Theorem (L.-Yang)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (P, E) on a Hilbert space \mathcal{H} . Let \mathcal{W}_v , \mathcal{H}_v , \mathcal{H}_C as defined previously. Then

- ① \mathcal{H}_C reduces \mathcal{V} .
- ② For each O_v , $\mathcal{W}_{[v]} = \bigoplus_{u \in O_v} \mathcal{W}_u$ reduces \mathcal{V} .
- ③ For each O_v and each $m \geq 0$, $\bigoplus_{|\mu|=m} V_\mu \mathcal{W}_{[v]}$ reduces \mathcal{V} .
- ④ For each O_v , $\mathcal{H}_{[v]} = \bigoplus_{u \in O_v} \mathcal{H}_u$ reduces \mathcal{V} .

Special case when P is a group?

Wold Decomposition

We would like to study how the Wold decomposition of \mathcal{V} on P interacts with the Wold decomposition of E . However, Wold decomposition on general semigroups is poorly studied. We focus on the case when $P = \mathbb{N}$, so \mathcal{V} is determined by a single isometry V .
Assumption. For every $e \in E^1$, there is $m \in \mathbb{N}$ such that $m|_e \neq 0$.

Proposition

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (\mathbb{N}, E) on a Hilbert space \mathcal{H} . Suppose the Wold decomposition of V is given by $\mathcal{H} = \mathcal{H}^U \oplus \mathcal{H}^S$. Then \mathcal{H}^U and \mathcal{H}^S both reduces \mathcal{S} .

Wold Decomposition - Main Result

Theorem (Yang-L.)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (\mathbb{N}, E) on a Hilbert space \mathcal{H} . Then \mathcal{H} decomposes as a direct sum of reducing subspaces:

$$\mathcal{H} = \mathcal{H}_C^U \oplus \mathcal{H}_C^S \oplus \left(\bigoplus_{O_v \in E^0 / \sim} \mathcal{H}_{[v]}^U \right) \oplus \left(\bigoplus_{v \in E^0} \mathcal{H}_v^S \right).$$

Wold Decomposition - Main Result

Theorem (Yang-L.)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (\mathbb{N}, E) on a Hilbert space \mathcal{H} . Then \mathcal{H} decomposes as a direct sum of reducing subspaces:

$$\mathcal{H} = \mathcal{H}_C^U \oplus \mathcal{H}_C^S \oplus \left(\bigoplus_{O_v \in E^0 / \sim} \mathcal{H}_{[v]}^U \right) \oplus \left(\bigoplus_{v \in E^0} \mathcal{H}_v^S \right).$$

1. On \mathcal{H}_C^U , \mathcal{V} is a unitary and \mathcal{S} is a CK family.

Wold Decomposition - Main Result, continued

Theorem (L.-Yang)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (\mathbb{N}, E) on a Hilbert space \mathcal{H} . Then \mathcal{H} decomposes as a direct sum of reducing subspaces:

$$\mathcal{H} = \mathcal{H}_C^U \oplus \mathcal{H}_C^S \oplus \left(\bigoplus_{O_v \in E^0 / \sim} \mathcal{H}_{[v]}^U \right) \oplus \left(\bigoplus_{v \in E^0} \mathcal{H}_v^S \right).$$

2. On \mathcal{H}_C^S , \mathcal{V} is pure and \mathcal{S} is a CK family.

Wold Decomposition - Main Result, continued

Theorem (L.-Yang)

Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (\mathbb{N}, E) on a Hilbert space \mathcal{H} . Then \mathcal{H} decomposes as a direct sum of reducing subspaces:

$$\mathcal{H} = \mathcal{H}_C^U \oplus \mathcal{H}_C^S \oplus \left(\bigoplus_{O_v \in E^0 / \sim} \mathcal{H}_{[v]}^U \right) \oplus \left(\bigoplus_{v \in E^0} \mathcal{H}_v^S \right).$$

3. **On each $\mathcal{H}_{[v]}^U$, \mathcal{V} is a unitary and \mathcal{S} is a direct sum of some amplifications of $\bigoplus_{u \in \Omega_v} L_{E,u}$. The multiplicity equals the dimension of $\mathcal{W}_v = (S_v - \sum_{r(e)=v})\mathcal{H}^U$. Moreover, \mathcal{V} is unitary on $\bigoplus_{u \in O_v} \mathcal{W}_u$.**

Wold Decomposition - Main Result, continued

Theorem (L.-Yang)

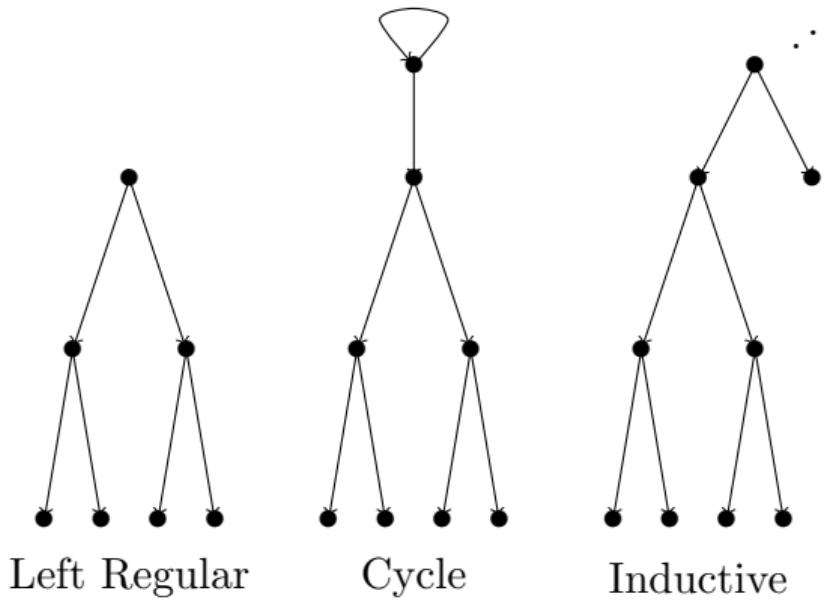
Let $(\mathcal{V}, \mathcal{S})$ be a Toeplitz representation of a self-similar graph (\mathbb{N}, E) on a Hilbert space \mathcal{H} . Then \mathcal{H} decomposes as a direct sum of reducing subspaces:

$$\mathcal{H} = \mathcal{H}_C^U \oplus \mathcal{H}_C^S \oplus \left(\bigoplus_{O_v \in E^0 / \sim} \mathcal{H}_{[v]}^U \right) \oplus \left(\bigoplus_{v \in E^0} \mathcal{H}_v^S \right).$$

4. **On each \mathcal{H}_v^S , $(\mathcal{V}, \mathcal{S})$ is unitarily equivalent to an amplification of the left regular representation $(\lambda_v^P, \lambda_v^E)^{(\alpha_v)}$, where α_v is the dimension of the space $\mathcal{W}_{P,v} = \ker V^* \cap (S_v - \sum_{r(e)=u} S_e S_e^*) \mathcal{H}_v^S$.**

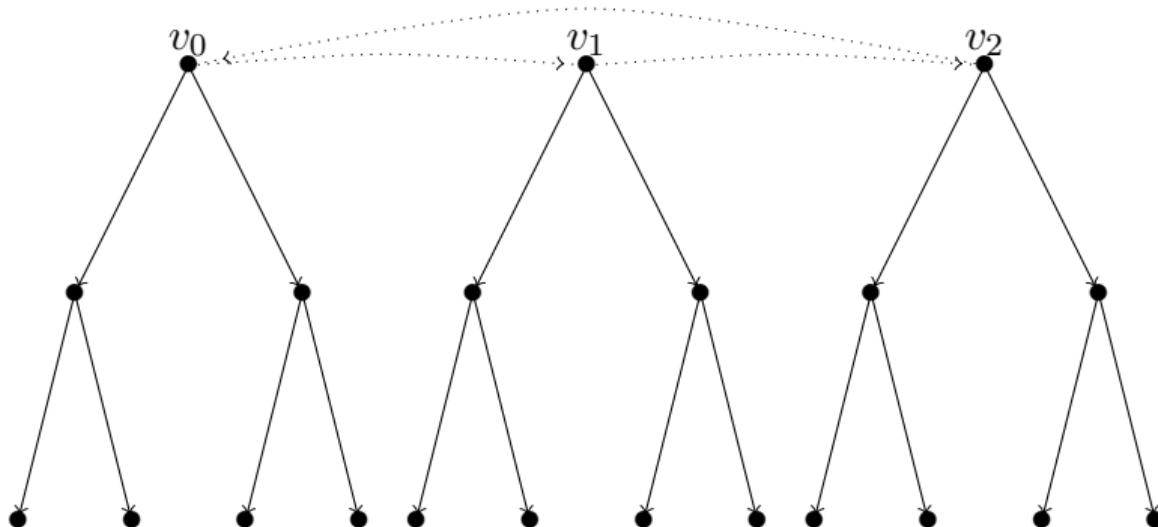
Atomic representations

Davidson and Pitts first characterized atomic representations of row isometries. This has been extended to TCK families by Davidson-Doron-L.. There are three types:



Atomic representations

Unitary + Shift Type:



Unitary + Shift Type:

Proposition

Let O_v be an orbit of $v \in E^0$, and suppose $(\mathcal{V}, \mathcal{S})$ is a Toeplitz representation on $\mathcal{H}_{[v]}^U = \bigoplus_{\mu \in E^*} S_\mu \mathcal{W}_{[v]}$ (i.e., \mathcal{V} is unitary and \mathcal{S} is an amplification of $\bigoplus_{u \in O_v} L_{E,u}$). Then \mathcal{V} is uniquely determined by $\mathcal{V}|_{\mathcal{W}_{[v]}}$.

Unitary + Shift Type:

Proposition

Let O_v be an orbit of $v \in E^0$, and suppose $(\mathcal{V}, \mathcal{S})$ is a Toeplitz representation on $\mathcal{H}_{[v]}^U = \bigoplus_{\mu \in E^*} S_\mu \mathcal{W}_{[v]}$ (i.e., \mathcal{V} is unitary and \mathcal{S} is an amplification of $\bigoplus_{u \in O_v} L_{E,u}$). Then \mathcal{V} is uniquely determined by $\mathcal{V}|_{\mathcal{W}_{[v]}}$.

Proof. $V_p S_\mu h = S_{p \cdot \mu} V_{p|_\mu} h$.

Unitary + Shift Type:

Proposition

Let O_v be an orbit of $v \in E^0$, and suppose $(\mathcal{V}, \mathcal{S})$ is a Toeplitz representation on $\mathcal{H}_{[v]}^U = \bigoplus_{\mu \in E^*} S_\mu \mathcal{W}_{[v]}$ (i.e., \mathcal{V} is unitary and \mathcal{S} is an amplification of $\bigoplus_{u \in O_v} L_{E,u}$). Then \mathcal{V} is uniquely determined by $\mathcal{V}|_{\mathcal{W}_{[v]}}$.

Proof. $V_p S_\mu h = S_{p \cdot \mu} V_{p|_\mu} h$.

Corollary

Let \mathcal{S} be some amplification of $\bigoplus_{u \in O_v} L_{E,u}$ and $\mathcal{W}_{[v]}$ be its wandering space. Suppose V_0 is unitary on $\mathcal{W}_{[v]}$. Then there exists a unique Toeplitz representation $(\mathcal{V}, \mathcal{S})$ such that $\mathcal{V}|_{\mathcal{W}_{[v]}} = V_0$.

Unitary + CK Type:

Proposition

Suppose \mathcal{S} is an inductive type atomic representation. Then there exists a unique \mathcal{V} such that $(\mathcal{V}, \mathcal{S})$ is a Toeplitz representation. Moreover, this is unitary + CK type.

Atomic representations

Unitary + CK Type:

Proposition

Suppose \mathcal{S} is an inductive type atomic representation. Then there exists a unique \mathcal{V} such that $(\mathcal{V}, \mathcal{S})$ is a Toeplitz representation. Moreover, this is unitary + CK type.

Example

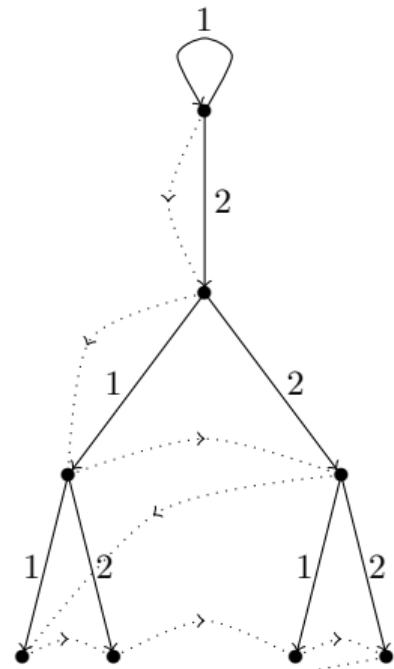
Consider \mathcal{S} be the shift on $\ell^2(E^\infty)$, which is an inductive type atomic representation. For each infinite path μ , let $V_p \delta_\mu = \delta_{p \cdot \mu}$. Here,

$$p \cdot (e_1 e_2 \cdots) = (p \cdot e_1)(p|_{e_1} \cdot e_2)(p|_{e_1 e_2} \cdot e_3) \cdots.$$

Then $(\mathcal{V}, \mathcal{S})$ is unitary + CK type.

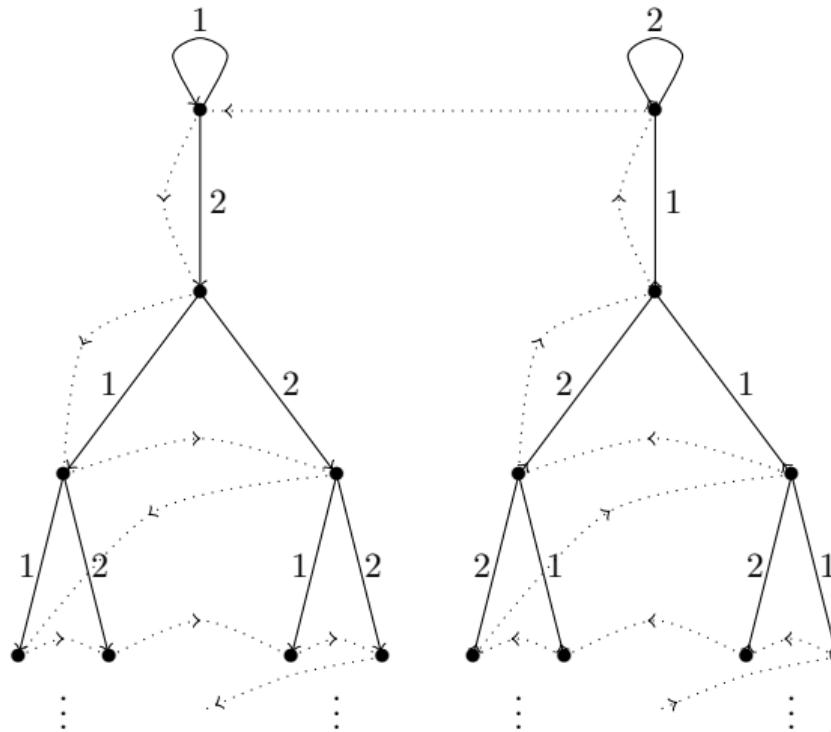
Atomic representations

Shift + CK Type: If \mathcal{S} is a cycle type where for each e in the cycle, let f be $1 \cdot f = e$. We must have $1|_f \neq 0$.



Atomic representations

It is possible to have unitary + CK, where the CK family is cycle type.



Thank you