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Singular foliations

Definition (Androulidakis-Skandalis)

A (possibly singular) foliation F of a smooth manifold M is a
C∞(M)-module of vector fields on M that is locally
finitely-generated and closed under Lie bracket.

Two points of M belong to the same leaf if you can get from
one to the other by composing flows of vector fields in F .

Frobenius: If F has“constant
rank”, M decomposes into
leaves of constant dimension.

Stefan-Sussmann: If not, M
still decomposes into leaves of
different dimensions.
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The C*-algebra of a foliation

Given a smooth, regular foliation F of a manifold M , there is
an associated foliation C*-algebra C ∗(F). This is classical
construction of Connes.

The C*-algebra is constructed using the holonomy groupoid
or graph of F . This is a Lie groupoid G (F) over M
introduced by Winkelnkemper.

F ⇝ G (F)⇝ C ∗(F)

Many authors have done work to extend these constructions to
cases where F is a singular foliation (Androulidakis-Skandalis,
Debord, Pradines-Bigonnet...).
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Simplest examples

For each positive integer k , let Fk be the singular foliation of
R singly-generated by y k d

dy
.

For all k , the leaves are: R−, R+ and {0}.
G (Fk) ∼= R⋊ϕk R (transformation groupoid)

C ∗(Fk) ∼= C0(R)⋊ϕk R.
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Simplest examples

The isomorphism type of the C*-algebras only depends on the
parity of k and they naturally sit in extensions:

0 K⊕K C0(R)⋊ϕk R C ∗(R) 0

More interestingly, one has:

Theorem (F, 2020)

The smooth algebras C∞
c (R⋊ϕk R), k = 1, 2, 3, . . . are not

isomorphic to one another.
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Codimension-1 generalization

Fix a positive integer k .

We look at foliations which, locally, are the product of Fk and
a trivial one leaf foliations. In a bit more detail:

Definition (Just for brevity...)

A foliation F of a connected manifold M is a k-hypersurface
foliation if:

1 the leaves of F consist of a hypersurface L and the
(open) components of its complement,

2 locally, F looks like Rn × R with the foliation generated
by d

dx1
, . . . , d

dxn
, y k d

dy
.
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Examples of k-hypersurface foliations

Example

Let M = R2 and L be the x-axis. Consider:

F1 generated by y 2 ∂
∂y

and ∂
∂x

F2 generated by y 2 ∂
∂y

and ∂
∂x

+ y ∂
∂y

Then F1 ̸= F2, but the diffeomorphism θ : M → M given by
θ(x , y) = (x , exy) has θ∗(F1) = F2.

Example

If we make x a periodic coordinate in the preceding example,
so that M = S1 ×R, then F1 and F2 are nonisomorphic (even
though they have the same leaves and are locally isomorphic).
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Groups of jets

Notation

Let Jk denote the group of kth order Taylor polynomials of
diffeomorphisms of R fixing 0.

More concretely:

Jk = {a1y + a2y
2 + . . . aky

k : ai ∈ R, a1 ̸= 0}

under the operation “compose and truncate”.

Jk is a solvable group.

J2 is isomorphic to the “ax+b group”.

There are canonical extensions R → Jk → Jk−1, where
the embedding of R is t 7→ y + ty k .
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A jet blowup groupoid

Let Γ be an orientation-preserving subgroup of Jk−1 and let
ΓR ⊂ Jk be the one-dimensional Lie group given as the
preimage of Γ by the map Jk → Jk−1.

Theorem (F, 2021)

There is a smooth blowup GΓ of the singular equivalence
relation R2

+ ∪ R2
− ∪ {(0, 0)} replacing (0, 0) by ΓR.

GΓ = R2
− ∪ R2

+ ∪ ΓR

If Γ is countable, GΓ is a second-countable, Hausdorff Lie
groupoid.

Note: ΓR becomes the isotropy group of 0 ∈ R.
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R⋊ϕk R is always an open subgroupoid of GΓ.
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Classification by jet holonomies

Let (M ,F , L) be a k-hypersurface foliation. Choose a
transversal T = R.

Theorem (F, 2021)

1 F determines1a holonomy mapping hF : π1(L) → Jk−1.

2 Every homomorphism occurs as hF for some F .

3 hF is a complete invariant of F .2

1Up to inner automorphisms of Jk−1.
2Restricted to a tubular neighbourhood of L.
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The holonomy groupoid

Assume now (M ,F , L) is a transversely-oriented
k-hypersurface foliation (we may take M = L× R).

Theorem (F, 2021)

The holonomy groupoid G (F) of a k-hypersurface foliation is
a second-countable, Hausdorff Lie groupoid.

Moreover, picking a transversal T = R, the restriction G (F)T
is isomorphic to the blowup groupoid GΓ discussed before,
where Γ ⊂ Jk−1 is the range of the holonomy map
π1(L) → Jk−1.

In particular, C ∗(F) ∼Morita C
∗(GΓ).
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Fundamental K-theory class

A. Connes, Noncommutative Geometry

pp. 255

pp.258
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Fundamental K-theory class

If (M ,F , L) is a transversely-oriented, k-hypersurface foliation,
we may make the following definition (independent of choice
of positively-oriented transversal T ).

Definition

The fundamental class [M/F ]∗ ∈ K0(C
∗(F)) is the image

of the positively-oriented generator of K1(C0(T )) under:

K1(C0(T ))
∼=→ K0(C0(T )⋊ϕk R) → K0(C

∗(GΓ))
∼=→ K0(C

∗(F))

Question

Is the fundamental class of a transversely-oriented
k-hypersurface foliation always non torsion?

I don’t know the answer right now!
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Boils down to the following:

Question

Given a group Γ ⊂ Jk−1, is the natural map

K0(C0(R)⋊ϕk R) → K0(C
∗(GΓ))

an injection?

Suffices to show “yes” for Γ = Jk−1 itself, if you don’t
mind non-second-countable spaces.

One approach: try to extend a 2-trace on C0(R)⋊ϕk R
(Elliot-Natsume-Nest) to C ∗(GΓ). Unfortunately, ϕ

k has
no invariant measure or we could use a trace instead.
This would be in the spirit of what Connes did.

Alternatively, can reformulate as a question about the
range of index map K1(C

∗(R)) → Z⊕ Z coming from
0 → K⊕K → C ∗(GΓ) → C ∗(ΓR) → 0.
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Thanks for listening!
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Theorem

Let Γ ⊂ Jk−1 be any orientation preserving group of jets.
Then K0(C0(R)⋊ϕk R) is injective if and only if

ind : K1(C
∗(ΓR)) → Z⊕ Z

arising from the extension

0 K⊕K C ∗(GΓ) C ∗(ΓR) 0

has range Z · (1, 1) if k is odd, resp. Z · (1,−1) if k is even.



0 K⊕K C0(R)⋊ϕk R C ∗(R) 0

0 K⊕K C ∗(GΓ) C ∗(ΓR) 0

K1(C0(R))

K1(C
∗(R)) Z⊕ Z K0(C0(R)⋊ϕk R)

K1(C
∗(ΓR) Z⊕ Z K0(C

∗(GΓ))

∼=



Γ = {x +mx4 + nx5 : m, n ∈ Z}
∼= Z× Z

ΓR = {x +mx4 + nx5 + tx6 : m, n ∈ Z; t ∈ R}
∼= Z× Z× R

C ∗(ΓR) ∼= C (T2)⊗ C0(R)

K1(C
∗(ΓR)) ∼= K 0(T2)
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