

Jet holonomies along a singular hypersurface

Michael Francis

University of Western Ontario

COSy 2022

Singular foliations

Definition (Androulidakis-Skandalis)

A (possibly singular) **foliation** \mathcal{F} of a smooth manifold M is a $C^\infty(M)$ -module of vector fields on M that is locally finitely-generated and closed under Lie bracket.

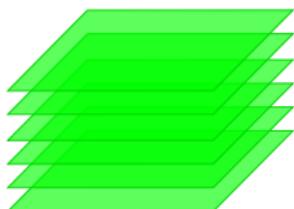
Two points of M belong to the same **leaf** if you can get from one to the other by composing flows of vector fields in \mathcal{F} .

Singular foliations

Definition (Androulidakis-Skandalis)

A (possibly singular) **foliation** \mathcal{F} of a smooth manifold M is a $C^\infty(M)$ -module of vector fields on M that is locally finitely-generated and closed under Lie bracket.

Two points of M belong to the same **leaf** if you can get from one to the other by composing flows of vector fields in \mathcal{F} .



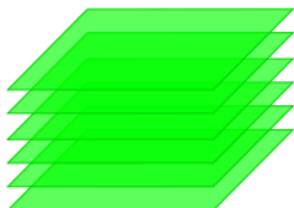
Frobenius: If \mathcal{F} has “constant rank”, M decomposes into leaves of constant dimension.

Singular foliations

Definition (Androulidakis-Skandalis)

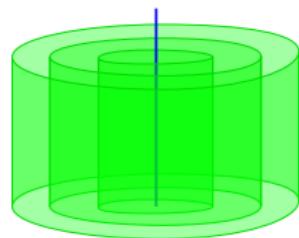
A (possibly singular) **foliation** \mathcal{F} of a smooth manifold M is a $C^\infty(M)$ -module of vector fields on M that is locally finitely-generated and closed under Lie bracket.

Two points of M belong to the same **leaf** if you can get from one to the other by composing flows of vector fields in \mathcal{F} .



Frobenius: If \mathcal{F} has “constant rank”, M decomposes into leaves of constant dimension.

Stefan-Sussmann: If not, M still decomposes into leaves of different dimensions.



The C^* -algebra of a foliation

Given a smooth, regular foliation \mathcal{F} of a manifold M , there is an associated **foliation C^* -algebra** $C^*(\mathcal{F})$. This is classical construction of Connes.

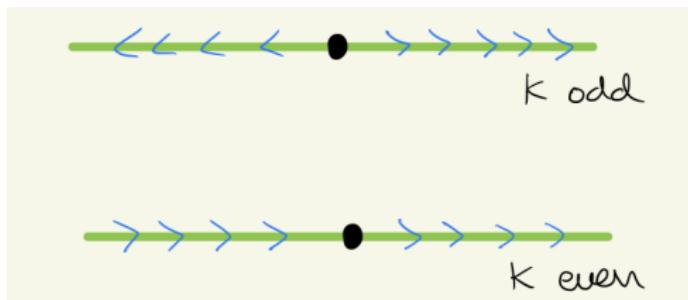
The C^* -algebra is constructed using the **holonomy groupoid** or **graph** of \mathcal{F} . This is a Lie groupoid $G(\mathcal{F})$ over M introduced by Winkelnkemper.

$$\mathcal{F} \rightsquigarrow G(\mathcal{F}) \rightsquigarrow C^*(\mathcal{F})$$

Many authors have done work to extend these constructions to cases where \mathcal{F} is a singular foliation (Androulidakis-Skandalis, Debord, Pradines-Bigonnet...).

Simplest examples

For each positive integer k , let \mathcal{F}_k be the singular foliation of \mathbb{R} singly-generated by $y^k \frac{d}{dy}$.

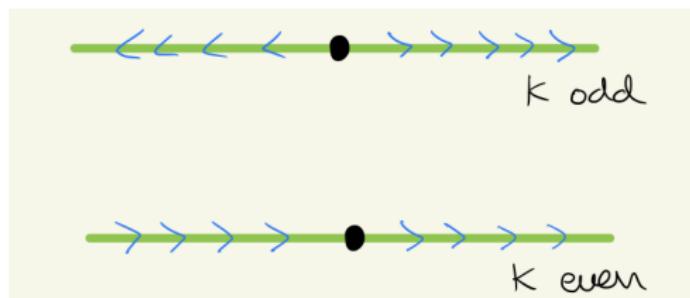


- For all k , the leaves are: \mathbb{R}_- , \mathbb{R}_+ and $\{0\}$.
- $G(\mathcal{F}_k) \cong \mathbb{R} \rtimes_{\phi^k} \mathbb{R}$ (transformation groupoid)
- $C^*(\mathcal{F}_k) \cong C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R}$.

Simplest examples

The isomorphism type of the C^* -algebras only depends on the parity of k and they naturally sit in extensions:

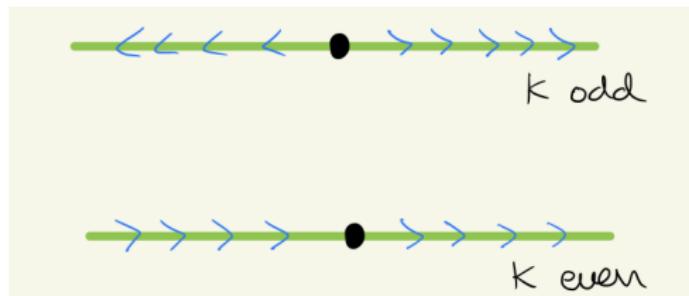
$$0 \longrightarrow \mathbb{K} \oplus \mathbb{K} \longrightarrow C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R} \longrightarrow C^*(\mathbb{R}) \longrightarrow 0$$



Simplest examples

The isomorphism type of the C^* -algebras only depends on the parity of k and they naturally sit in extensions:

$$0 \longrightarrow \mathbb{K} \oplus \mathbb{K} \longrightarrow C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R} \longrightarrow C^*(\mathbb{R}) \longrightarrow 0$$



More interestingly, one has:

Theorem (F, 2020)

The smooth algebras $C_c^\infty(\mathbb{R} \rtimes_{\phi^k} \mathbb{R})$, $k = 1, 2, 3, \dots$ are not isomorphic to one another.

Codimension-1 generalization

Fix a positive integer k .

We look at foliations which, locally, are the product of \mathcal{F}_k and a trivial one leaf foliations. In a bit more detail:

Definition (Just for brevity...)

A foliation \mathcal{F} of a connected manifold M is a **k -hypersurface foliation** if:

- ① the leaves of \mathcal{F} consist of a hypersurface L and the (open) components of its complement,
- ② locally, \mathcal{F} looks like $\mathbb{R}^n \times \mathbb{R}$ with the foliation generated by $\frac{d}{dx_1}, \dots, \frac{d}{dx_n}, y^k \frac{d}{dy}$.

Examples of k -hypersurface foliations

Example

Let $M = \mathbb{R}^2$ and L be the x -axis. Consider:

- \mathcal{F}_1 generated by $y^2 \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial x}$
- \mathcal{F}_2 generated by $y^2 \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$

Then $\mathcal{F}_1 \neq \mathcal{F}_2$, but the diffeomorphism $\theta : M \rightarrow M$ given by $\theta(x, y) = (x, e^x y)$ has $\theta_*(\mathcal{F}_1) = \mathcal{F}_2$.

Examples of k -hypersurface foliations

Example

Let $M = \mathbb{R}^2$ and L be the x -axis. Consider:

- \mathcal{F}_1 generated by $y^2 \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial x}$
- \mathcal{F}_2 generated by $y^2 \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$

Then $\mathcal{F}_1 \neq \mathcal{F}_2$, but the diffeomorphism $\theta : M \rightarrow M$ given by $\theta(x, y) = (x, e^x y)$ has $\theta_*(\mathcal{F}_1) = \mathcal{F}_2$.

Example

If we make x a periodic coordinate in the preceding example, so that $M = S^1 \times \mathbb{R}$, then \mathcal{F}_1 and \mathcal{F}_2 are nonisomorphic (even though they have the same leaves and are locally isomorphic).

Groups of jets

Notation

Let J^k denote the group of k th order Taylor polynomials of diffeomorphisms of \mathbb{R} fixing 0.

More concretely:

$$J^k = \{a_1 y + a_2 y^2 + \dots + a_k y^k : a_i \in \mathbb{R}, a_1 \neq 0\}$$

under the operation “compose and truncate”.

- J^k is a solvable group.
- J^2 is isomorphic to the “ax+b group”.
- There are canonical extensions $\mathbb{R} \rightarrow J^k \rightarrow J^{k-1}$, where the embedding of \mathbb{R} is $t \mapsto y + ty^k$.

A jet blowup groupoid

Let Γ be an orientation-preserving subgroup of J^{k-1} and let $\Gamma_{\mathbb{R}} \subset J^k$ be the one-dimensional Lie group given as the preimage of Γ by the map $J^k \rightarrow J^{k-1}$.

A jet blowup groupoid

Let Γ be an orientation-preserving subgroup of J^{k-1} and let $\Gamma_{\mathbb{R}} \subset J^k$ be the one-dimensional Lie group given as the preimage of Γ by the map $J^k \rightarrow J^{k-1}$.

Theorem (F, 2021)

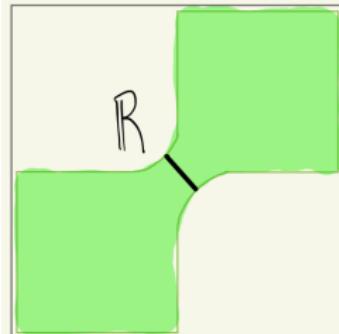
There is a smooth blowup G_{Γ} of the singular equivalence relation $\mathbb{R}_+^2 \cup \mathbb{R}_-^2 \cup \{(0, 0)\}$ replacing $(0, 0)$ by $\Gamma_{\mathbb{R}}$.

$$G_{\Gamma} = \mathbb{R}_-^2 \cup \mathbb{R}_+^2 \cup \Gamma_{\mathbb{R}}$$

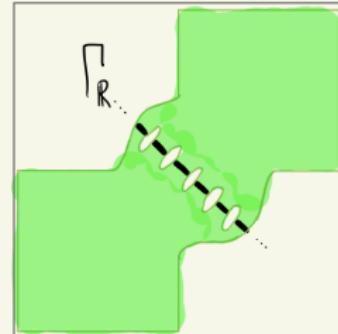
If Γ is countable, G_{Γ} is a second-countable, Hausdorff Lie groupoid.

Note: $\Gamma_{\mathbb{R}}$ becomes the isotropy group of $0 \in \mathbb{R}$.

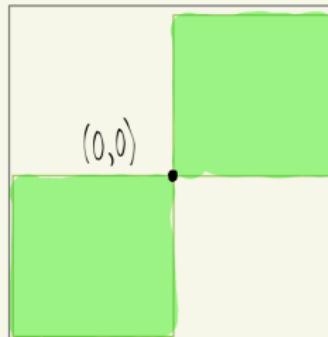
$$G_1 \simeq \mathbb{R} \rtimes_{\phi^k} \mathbb{R}$$



$$G_\Gamma$$



$$(0,0)$$



$\mathbb{R} \rtimes_{\phi^k} \mathbb{R}$ is always an open subgroupoid of G_Γ .

Classification by jet holonomies

Let (M, \mathcal{F}, L) be a k -hypersurface foliation. Choose a transversal $T = \mathbb{R}$.

Theorem (F, 2021)

- ① \mathcal{F} determines¹ a holonomy mapping $h_{\mathcal{F}} : \pi_1(L) \rightarrow J^{k-1}$.
- ② Every homomorphism occurs as $h_{\mathcal{F}}$ for some \mathcal{F} .
- ③ $h_{\mathcal{F}}$ is a complete invariant of \mathcal{F} .²

¹Up to inner automorphisms of J^{k-1} .

²Restricted to a tubular neighbourhood of L .

The holonomy groupoid

Assume now (M, \mathcal{F}, L) is a transversely-oriented k -hypersurface foliation (we may take $M = L \times \mathbb{R}$).

Theorem (F, 2021)

The holonomy groupoid $G(\mathcal{F})$ of a k -hypersurface foliation is a second-countable, Hausdorff Lie groupoid.

Moreover, picking a transversal $T = \mathbb{R}$, the restriction $G(\mathcal{F})_T$ is isomorphic to the blowup groupoid G_Γ discussed before, where $\Gamma \subset J^{k-1}$ is the range of the holonomy map $\pi_1(L) \rightarrow J^{k-1}$.

In particular, $C^(\mathcal{F}) \sim_{\text{Morita}} C^*(G_\Gamma)$.*

Fundamental K-theory class

A. Connes, *Noncommutative Geometry*

pp. 255

Theorem 6. *Let Γ be a countable group of orientation-preserving homeomorphisms of \mathbb{S}^1 and $A = C(\mathbb{S}^1) \rtimes_r \Gamma$ be the reduced crossed product C^* -algebra. Then the canonical homomorphism $i : C(\mathbb{S}^1) \rightarrow A$ is an injection of $K_1(C(\mathbb{S}^1)) = \mathbb{Z}$ in $K_1(A)$.*

pp.258

Theorem 9. *Let (V, F) be a transversely oriented foliation of codimension 1; then $[V/F]^*$ is a non-torsion element of $K_1(C_r^*(V, F))$.*

Fundamental K-theory class

If (M, \mathcal{F}, L) is a transversely-oriented, k -hypersurface foliation, we may make the following definition (independent of choice of positively-oriented transversal T).

Definition

The **fundamental class** $[M/\mathcal{F}]^* \in K_0(C^*(\mathcal{F}))$ is the image of the positively-oriented generator of $K_1(C_0(T))$ under:

$$K_1(C_0(T)) \xrightarrow{\cong} K_0(C_0(T) \rtimes_{\phi^k} \mathbb{R}) \rightarrow K_0(C^*(G_\Gamma)) \xrightarrow{\cong} K_0(C^*(\mathcal{F}))$$

Fundamental K-theory class

If (M, \mathcal{F}, L) is a transversely-oriented, k -hypersurface foliation, we may make the following definition (independent of choice of positively-oriented transversal T).

Definition

The **fundamental class** $[M/\mathcal{F}]^* \in K_0(C^*(\mathcal{F}))$ is the image of the positively-oriented generator of $K_1(C_0(T))$ under:

$$K_1(C_0(T)) \xrightarrow{\cong} K_0(C_0(T) \rtimes_{\phi^k} \mathbb{R}) \rightarrow K_0(C^*(G_\Gamma)) \xrightarrow{\cong} K_0(C^*(\mathcal{F}))$$

Question

Is the fundamental class of a transversely-oriented k -hypersurface foliation always non torsion?

I don't know the answer right now!

Boils down to the following:

Question

Given a group $\Gamma \subset J^{k-1}$, is the natural map

$$K_0(C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R}) \rightarrow K_0(C^*(G_\Gamma))$$

an injection?

Boils down to the following:

Question

Given a group $\Gamma \subset J^{k-1}$, is the natural map

$$K_0(C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R}) \rightarrow K_0(C^*(G_\Gamma))$$

an injection?

- Suffices to show “yes” for $\Gamma = J^{k-1}$ itself, if you don’t mind non-second-countable spaces.

Boils down to the following:

Question

Given a group $\Gamma \subset J^{k-1}$, is the natural map

$$K_0(C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R}) \rightarrow K_0(C^*(G_\Gamma))$$

an injection?

- Suffices to show “yes” for $\Gamma = J^{k-1}$ itself, if you don’t mind non-second-countable spaces.
- One approach: try to extend a 2-trace on $C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R}$ (Elliot-Natsume-Nest) to $C^*(G_\Gamma)$. Unfortunately, ϕ^k has no invariant measure or we could use a trace instead. This would be in the spirit of what Connes did.

Boils down to the following:

Question

Given a group $\Gamma \subset J^{k-1}$, is the natural map

$$K_0(C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R}) \rightarrow K_0(C^*(G_\Gamma))$$

an injection?

- Suffices to show “yes” for $\Gamma = J^{k-1}$ itself, if you don’t mind non-second-countable spaces.
- One approach: try to extend a 2-trace on $C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R}$ (Elliot-Natsume-Nest) to $C^*(G_\Gamma)$. Unfortunately, ϕ^k has no invariant measure or we could use a trace instead. This would be in the spirit of what Connes did.
- Alternatively, can reformulate as a question about the range of index map $K_1(C^*(\mathbb{R})) \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ coming from $0 \rightarrow \mathbb{K} \oplus \mathbb{K} \rightarrow C^*(G_\Gamma) \rightarrow C^*(\Gamma_{\mathbb{R}}) \rightarrow 0$.

Thanks for listening!

References:

- I. Androulidakis, G. Skandalis: The holonomy groupoid of a singular foliation. *Journal für die reine und angewandte Mathematik* (2009).
- A. Connes: Noncommutative geometry, Chapter 6: Factors of type III, cyclic cohomology and the Godbillon-Vey invariant.
- M. Francis: A Dixmier-Malliavin theorem for Lie groupoids. *arXiv:2009.13760* (2020). To appear J. Lie theory.
- M. Francis: The smooth algebra of a one-dimensional singular foliation. *arXiv:2011.08422* (2020).
- M. Francis: Groupoids and algebras of certain singular foliations with finitely many leaves. (PhD thesis).

Theorem

Let $\Gamma \subset J^{k-1}$ be any orientation preserving group of jets.
Then $K_0(C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R})$ is injective if and only if

$$\text{ind} : K_1(C^*(\Gamma_{\mathbb{R}})) \rightarrow \mathbb{Z} \oplus \mathbb{Z}$$

arising from the extension

$$0 \longrightarrow \mathbb{K} \oplus \mathbb{K} \longrightarrow C^*(G_{\Gamma}) \longrightarrow C^*(\Gamma_{\mathbb{R}}) \longrightarrow 0$$

has range $\mathbb{Z} \cdot (1, 1)$ if k is odd, resp. $\mathbb{Z} \cdot (1, -1)$ if k is even.

$$\begin{array}{ccccccc}
0 & \longrightarrow & \mathbb{K} \oplus \mathbb{K} & \longrightarrow & C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R} & \longrightarrow & C^*(\mathbb{R}) \longrightarrow 0 \\
& & \parallel & & \downarrow & & \downarrow \\
0 & \longrightarrow & \mathbb{K} \oplus \mathbb{K} & \longrightarrow & C^*(G_\Gamma) & \longrightarrow & C^*(\Gamma_{\mathbb{R}}) \longrightarrow 0
\end{array}$$

$$\begin{array}{ccccc}
& & K_1(C_0(\mathbb{R})) & & \\
& & \downarrow \cong & & \\
K_1(C^*(\mathbb{R})) & \longrightarrow & \mathbb{Z} \oplus \mathbb{Z} & \longrightarrow & K_0(C_0(\mathbb{R}) \rtimes_{\phi^k} \mathbb{R}) \\
\downarrow & & \parallel & & \downarrow \\
K_1(C^*(\Gamma_{\mathbb{R}})) & \longrightarrow & \mathbb{Z} \oplus \mathbb{Z} & \longrightarrow & K_0(C^*(G_\Gamma))
\end{array}$$

$$\begin{aligned}\Gamma &= \{x+mx^4+nx^5 : m,n \in \mathbb{Z}\} \\ &\cong \mathbb{Z} \times \mathbb{Z}\end{aligned}$$

$$\begin{aligned}\Gamma_{\mathbb{R}} &= \{x+mx^4+nx^5+tx^6 : m,n \in \mathbb{Z}; t \in \mathbb{R}\} \\ &\cong \mathbb{Z} \times \mathbb{Z} \times \mathbb{R}\end{aligned}$$

$$C^*(\Gamma_{\mathbb{R}}) \cong C(\mathbb{T}^2) \otimes C_0(\mathbb{R})$$

$$K_1(C^*(\Gamma_{\mathbb{R}})) \cong K^0(\mathbb{T}^2)$$