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Two Constructions of Cu(A):

With finitely generated Hilbert modules

-Cuntz described in terms of ⊂, ∼=
-Cuntz weaker than ∼=⊂
[H] + [K ] = [H ⊕ K ]

The correspondence is: a ∈Mn ⊗ A 7→ a∗An.
a∗An ∼= b∗An iff for some b′, b∗An = b′∗An and |a| ∼M−vN |b| (ie.
∃x , |a| = x∗x , xx∗ = |b′|)
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The Cuntz Semigroup

Cuntz semigroup promises to be a useful tool in the
Classification Program
Computations of Cu(A) are rare:

Brown-Perera-Toms: A simple, unital, Z-stable, stably finite
A = C(X ), dim X ≤ 1 or dim X = 2 and H2(X ) = 0.
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Using Open Projections

Definition.
An open projection is a projection in A∗∗ which is an
increasing limit of elements of A.

Assume A is sep., so all open projections are
χ
(0,∞)(a),a ∈ A+.

Atomic representation is faithful for open projections, so
view open projections in this representation.
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Using Open Projections

Use open projections to represent Cuntz elements
For a,b ∈Mn⊗A, χ(0,∞)(|a|) = χ

(0,∞)(|b|) iff a∗An = b∗An.

a∗An ∼= b∗An iff χ(0,∞)(|a|) ∼M−vN χ
(0,∞)(|b|) where the

partial isometry occurs in the polar decomposition of an
element of Mn ⊗ A.
Hilbert module assoc. to open projection p is a submodule
of Hilbert module assoc. to q iff p ≤ q.
No simple formulation of Cuntz order relation for open
projections.
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Open Projections
Dimension Three

Open Projections in C0(X )
X 2nd ctble. l.c. Hausdorff

Open projections are particularly useful for studying
Cu(C0(X )).

Atomic representation of C0(X )⊗Mn gives L∞(X )⊗Mn,
so functional calculus is done pointwise
An open projection p for Mn ⊗ C0(X ) is given by a
compatible family (pi)

n
i=0 of continuous projections:

pi defined on open set Ui , where U0, . . . ,Un cover X
pi has rank i
pi ≤ pj on Ui ∩ Uj for i ≤ j
p is given by

∨
pi (ie. p(x) = pi(x) for greatest i s.t. pi(x) is

defined).
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Open Projections
Dimension Three

Open Projections in C0(X )
X 2nd countable, l.c., Hausdorff

Consider the case that p,q are constant rank open projections
(thus belong to Cb(X )):

p -Cuntz q iff for every compact set K ⊂ X , p|K -M−vN q|K .
Not the same as p -M−vN q in Cb(X ).
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Open Projections
Dimension Three

Open Projections in C0(X )
X 2nd ctble. l.c. Hausdorff

For stabilized Cuntz semigroup, infinite rank is possible, so
above decompositions don’t work.
To study Cus(C0(X )), we approximate elements by those
in Cu(C0(X )).
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Open Projections
Dimension Three

Dimension Three Spectrum
X be 2nd countable, l.c., Hausdorff, dim X ≤ 3.

For open projection p, let R=i(p) := {x ∈ X : Rank p(x) = i}.

Theorem 1. (Robert-T)

For open projections p,q of K ⊗ C0(X ),
p -Cuntz q iff for each i , j ∈ N,

p|R=i (p)∩R=j (q) -Cuntz q|R=i (p)∩R=j (q).

Theorem 2. (Robert-T)

Given any bounded l.s.c. r : X → N and any (not necessarily
compatible) family of continuous projections (pi) s.t.

pi is defined on r−1({i})

pi has rank i ,

∃ open projection p of Mm ⊗ C0(X ) s.t. p|r−1({i}) ∼Cuntz pi .
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Open Projections
Dimension Three

Dimension Three Spectrum
X be 2nd countable, l.c., Hausdorff, dim X ≤ 3.

Description of Cu(C0(X )).

Elements of Cu(C0(X )) are pairs (r , (pi)) where
r : X → N is bounded and l.s.c.
For each i ∈ N, pi is a constant rank i element of
Cu
(
C0(r−1({i}))

)
(r , (pi)) ≤ (r ′, (p′i )) iff pi -Cuntz pj where both defined, ∀i , j

Have Cuntz order of constant rank elements in terms of
M-vN equivalence of restrictions, so this describes
Cu(C0(X )) in terms of V (Y ) for compact Y ⊂ X .
For Cus(C0(X )), Thm. 1 describes the order, but don’t
have a nice description of what data arises.
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Outlook
Applications of dim. 3 description?

Can show Cus(C0(X )) has weak cancellation, ie. if
a + c << b + c then a ≤ b.
May be interesting to look at Cus(A) where A is AH with
dimension bounded by 3

Gong: Includes all simple AH with slow dimension growth
Could help understand Elliott-Gong-Li classification
Includes B ⊗ C0((0,1]) where B is AH with dimension
bounded by 2
Robert-Santiago: Cus(B ⊗ C0((0,1])) occurs in classifying
homomorphisms C0((0,1])→ B, for such B.
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Outlook
More General Commutative C∗-algebras

General goal is to describe Cu(C0(X )) for dim X <∞, in
terms of V (Y ), Y ⊂ X closed.

Conjecture.

For [a], [b] ∈ Cu(C0(X )), [a] ≤ [b] iff for every Y ⊂ X compact,
and every continuous projection p on Y ,

p -Cuntz a|Y ⇒ p -Cuntz b|Y .

Thm. 1⇒ conjecture holds for dim X ≤ 3.
Also, conjecture holds when [a], [b] have constant rank.
Even for dim X = 4, both Thm. 1 and Thm. 2 fail.
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