

The Cuntz Semigroup for Commutative C^* -algebras

Aaron Tikuisis

aptikuis@hotmail.com

University of Toronto

Canadian Operator Symposium 2009

Joint work with Leonel Robert

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With elements of $\bigcup_n \mathfrak{M}_n \otimes A$
 - $a \sim_{\text{Cuntz}} b$ if $a = \lim s_n b t_n$, some $(s_n), (t_n)$
 - $[a] + [b] = [a \oplus b]$

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With elements of $\bigcup_n \mathfrak{M}_n \otimes A$
 - $a \sim_{\text{Cuntz}} b$ if $a = \lim s_n b t_n$, some $(s_n), (t_n)$
 - $[a] + [b] = [a \oplus b]$

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With elements of $\bigcup_n \mathfrak{M}_n \otimes A$
 - $a \precsim_{\text{Cuntz}} b$ if $a = \lim s_n b t_n$, some $(s_n), (t_n)$
 - $[a] + [b] = [a \oplus b]$

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With elements of $\bigcup_n \mathfrak{M}_n \otimes A$
 - $a \precsim_{\text{Cuntz}} b$ if $a = \lim s_n b t_n$, some $(s_n), (t_n)$
 - $[a] + [b] = [a \oplus b]$

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With finitely generated Hilbert modules

- $\mathcal{Z}_{\text{Cuntz}}$ described in terms of \subset , \cong
- $\mathcal{Z}_{\text{Cuntz}}$ weaker than \cong_{\subset}
- $[H] + [K] = [H \oplus K]$

The correspondence is: $a \in \mathfrak{M}_n \otimes A \mapsto \overline{a^* A^n}$.

$\overline{a^* A^n} \cong \overline{b^* A^n}$ iff for some b' , $\overline{b^* A^n} = \overline{b'^* A^n}$ and $|a| \sim_{M-vN} |b|$ (ie. $\exists x, |a| = x^* x, x x^* = |b'|$)

- Let $\text{Cu}_s(A) = \text{Cu}(\mathcal{K} \otimes A)$.

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With finitely generated Hilbert modules

- \lesssim_{Cuntz} described in terms of \subset , \cong
- \lesssim_{Cuntz} weaker than \cong_{\subset}
- $[H] + [K] = [H \oplus K]$

The correspondence is: $a \in \mathfrak{M}_n \otimes A \mapsto \overline{a^* A^n}$.

$\overline{a^* A^n} \cong \overline{b^* A^n}$ iff for some b' , $\overline{b^* A^n} = \overline{b'^* A^n}$ and $|a| \sim_{M-\text{vN}} |b|$ (ie. $\exists x, |a| = x^* x, x x^* = |b'|$)

- Let $\text{Cu}_s(A) = \text{Cu}(\mathcal{K} \otimes A)$.

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With finitely generated Hilbert modules

- \lesssim_{Cuntz} described in terms of \subset, \cong
- \lesssim_{Cuntz} weaker than \cong_{\subset}
- $[H] + [K] = [H \oplus K]$

The correspondence is: $a \in \mathfrak{M}_n \otimes A \mapsto \overline{a^* A^n}$.

$\overline{a^* A^n} \cong \overline{b^* A^n}$ iff for some b' , $\overline{b^* A^n} = \overline{b'^* A^n}$ and $|a| \sim_{M-vN} |b|$ (ie. $\exists x, |a| = x^* x, xx^* = |b'|$)

- Let $\text{Cu}_s(A) = \text{Cu}(\mathcal{K} \otimes A)$.

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With finitely generated Hilbert modules

- \lesssim_{Cuntz} described in terms of \subset , \cong
- \lesssim_{Cuntz} weaker than \cong_{\subset}
- $[H] + [K] = [H \oplus K]$

The correspondence is: $a \in \mathfrak{M}_n \otimes A \mapsto \overline{a^* A^n}$.

$\overline{a^* A^n} \cong \overline{b^* A^n}$ iff for some b' , $\overline{b^* A^n} = \overline{b'^* A^n}$ and $|a| \sim_{M-\text{vN}} |b|$ (ie. $\exists x, |a| = x^* x, x x^* = |b'|$)

- Let $\text{Cu}_s(A) = \text{Cu}(\mathcal{K} \otimes A)$.

Constructing the Cuntz Semigroup

Two Constructions of $\text{Cu}(A)$:

- With finitely generated Hilbert modules
 - \sim_{Cuntz} described in terms of \subset , \cong
 - \sim_{Cuntz} weaker than \cong_{\subset}
 - $[H] + [K] = [H \oplus K]$

The correspondence is: $a \in \mathfrak{M}_n \otimes A \mapsto \overline{a^* A^n}$.
 $\overline{a^* A^n} \cong \overline{b^* A^n}$ iff for some b' , $\overline{b^* A^n} = \overline{b'^* A^n}$ and $|a| \sim_{M-vN} |b|$ (ie.
 $\exists x, |a| = x^* x, x x^* = |b'|$)

- Let $\text{Cu}_s(A) = \text{Cu}(\mathcal{K} \otimes A)$.

The Cuntz Semigroup

- Cuntz semigroup promises to be a useful tool in the Classification Program
- Computations of $\text{Cu}(A)$ are rare:
 - Brown-Perera-Toms: A simple, unital, \mathcal{Z} -stable, stably finite
 - $A = C(X)$, $\dim X \leq 1$ or $\dim X = 2$ and $H^2(X) = 0$.

The Cuntz Semigroup

- Cuntz semigroup promises to be a useful tool in the Classification Program
- Computations of $\text{Cu}(A)$ are rare:
 - Brown-Perera-Toms: A simple, unital, \mathcal{Z} -stable, stably finite
 - $A = C(X)$, $\dim X \leq 1$ or $\dim X = 2$ and $H^2(X) = 0$.

The Cuntz Semigroup

- Cuntz semigroup promises to be a useful tool in the Classification Program
- Computations of $\text{Cu}(A)$ are rare:
 - Brown-Perera-Toms: A simple, unital, \mathcal{Z} -stable, stably finite
 - $A = C(X)$, $\dim X \leq 1$ or $\dim X = 2$ and $H^2(X) = 0$.

The Cuntz Semigroup

- Cuntz semigroup promises to be a useful tool in the Classification Program
- Computations of $\mathrm{Cu}(A)$ are rare:
 - Brown-Perera-Toms: A simple, unital, \mathcal{Z} -stable, stably finite
 - $A = C(X)$, $\dim X \leq 1$ or $\dim X = 2$ and $H^2(X) = 0$.

Using Open Projections

Definition.

An **open projection** is a projection in A^{**} which is an increasing limit of elements of A .

- Assume A is sep., so all open projections are $\chi_{(0,\infty)}(a)$, $a \in A_+$.
- Atomic representation is faithful for open projections, so view open projections in this representation.

Using Open Projections

Definition.

An **open projection** is a projection in A^{**} which is an increasing limit of elements of A .

- Assume A is sep., so all open projections are $\chi_{(0,\infty)}(a)$, $a \in A_+$.
- Atomic representation is faithful for open projections, so view open projections in this representation.

Using Open Projections

Definition.

An **open projection** is a projection in A^{**} which is an increasing limit of elements of A .

- Assume A is sep., so all open projections are $\chi_{(0,\infty)}(a)$, $a \in A_+$.
- Atomic representation is faithful for open projections, so view open projections in this representation.

Using Open Projections

Use open projections to represent Cuntz elements

- For $a, b \in \mathfrak{M}_n \otimes A$, $\chi_{(0, \infty)}(|a|) = \chi_{(0, \infty)}(|b|)$ iff $\overline{a^* A^n} = \overline{b^* A^n}$.
- $\overline{a^* A^n} \cong \overline{b^* A^n}$ iff $\chi_{(0, \infty)}(|a|) \sim_{M - vN} \chi_{(0, \infty)}(|b|)$ where the partial isometry occurs in the polar decomposition of an element of $\mathfrak{M}_n \otimes A$.
- Hilbert module assoc. to open projection p is a submodule of Hilbert module assoc. to q iff $p \leq q$.
- No simple formulation of Cuntz order relation for open projections.

Using Open Projections

Use open projections to represent Cuntz elements

- For $a, b \in \mathfrak{M}_n \otimes A$, $\chi_{(0, \infty)}(|a|) = \chi_{(0, \infty)}(|b|)$ iff $\overline{a^* A^n} = \overline{b^* A^n}$.
- $\overline{a^* A^n} \cong \overline{b^* A^n}$ iff $\chi_{(0, \infty)}(|a|) \sim_{M - vN} \chi_{(0, \infty)}(|b|)$ where the partial isometry occurs in the polar decomposition of an element of $\mathfrak{M}_n \otimes A$.
- Hilbert module assoc. to open projection p is a submodule of Hilbert module assoc. to q iff $p \leq q$.
- No simple formulation of Cuntz order relation for open projections.

Using Open Projections

Use open projections to represent Cuntz elements

- For $a, b \in \mathfrak{M}_n \otimes A$, $\chi_{(0, \infty)}(|a|) = \chi_{(0, \infty)}(|b|)$ iff $\overline{a^* A^n} = \overline{b^* A^n}$.
- $\overline{a^* A^n} \cong \overline{b^* A^n}$ iff $\chi_{(0, \infty)}(|a|) \sim_{M - vN} \chi_{(0, \infty)}(|b|)$ where the partial isometry occurs in the polar decomposition of an element of $\mathfrak{M}_n \otimes A$.
- Hilbert module assoc. to open projection p is a submodule of Hilbert module assoc. to q iff $p \leq q$.
- No simple formulation of Cuntz order relation for open projections.

Using Open Projections

Use open projections to represent Cuntz elements

- For $a, b \in \mathfrak{M}_n \otimes A$, $\chi_{(0, \infty)}(|a|) = \chi_{(0, \infty)}(|b|)$ iff $\overline{a^* A^n} = \overline{b^* A^n}$.
- $\overline{a^* A^n} \cong \overline{b^* A^n}$ iff $\chi_{(0, \infty)}(|a|) \sim_{M - vN} \chi_{(0, \infty)}(|b|)$ where the partial isometry occurs in the polar decomposition of an element of $\mathfrak{M}_n \otimes A$.
- Hilbert module assoc. to open projection p is a submodule of Hilbert module assoc. to q iff $p \leq q$.
- No simple formulation of Cuntz order relation for open projections.

Using Open Projections

Use open projections to represent Cuntz elements

- For $a, b \in \mathfrak{M}_n \otimes A$, $\chi_{(0, \infty)}(|a|) = \chi_{(0, \infty)}(|b|)$ iff $\overline{a^* A^n} = \overline{b^* A^n}$.
- $\overline{a^* A^n} \cong \overline{b^* A^n}$ iff $\chi_{(0, \infty)}(|a|) \sim_{M - vN} \chi_{(0, \infty)}(|b|)$ where the partial isometry occurs in the polar decomposition of an element of $\mathfrak{M}_n \otimes A$.
- Hilbert module assoc. to open projection p is a submodule of Hilbert module assoc. to q iff $p \leq q$.
- No simple formulation of Cuntz order relation for open projections.

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

Open projections are particularly useful for studying $\text{Cu}(C_0(X))$.

- Atomic representation of $C_0(X) \otimes \mathfrak{M}_n$ gives $L^\infty(X) \otimes \mathfrak{M}_n$, so functional calculus is done pointwise
- An open projection p for $\mathfrak{M}_n \otimes C_0(X)$ is given by a compatible family $(p_i)_{i=0}^n$ of continuous projections:
 - p_i defined on open set U_i , where U_0, \dots, U_n cover X
 - p_i has rank i
 - $p_i \leq p_j$ on $U_i \cap U_j$ for $i \leq j$
 - p is given by $\bigvee p_i$ (ie. $p(x) = p_i(x)$ for greatest i s.t. $p_i(x)$ is defined).

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

Open projections are particularly useful for studying
 $\text{Cu}(C_0(X))$.

- Atomic representation of $C_0(X) \otimes \mathfrak{M}_n$ gives $L^\infty(X) \otimes \mathfrak{M}_n$, so functional calculus is done pointwise
- An open projection p for $\mathfrak{M}_n \otimes C_0(X)$ is given by a compatible family $(p_i)_{i=0}^n$ of continuous projections:
 - p_i defined on open set U_i , where U_0, \dots, U_n cover X
 - p_i has rank i
 - $p_i \leq p_j$ on $U_i \cap U_j$ for $i \leq j$
 - p is given by $\bigvee p_i$ (ie. $p(x) = p_i(x)$ for greatest i s.t. $p_i(x)$ is defined).

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

Open projections are particularly useful for studying $\text{Cu}(C_0(X))$.

- Atomic representation of $C_0(X) \otimes \mathfrak{M}_n$ gives $L^\infty(X) \otimes \mathfrak{M}_n$, so functional calculus is done pointwise
- An open projection p for $\mathfrak{M}_n \otimes C_0(X)$ is given by a compatible family $(p_i)_{i=0}^n$ of continuous projections:
 - p_i defined on open set U_i , where U_0, \dots, U_n cover X
 - p_i has rank i
 - $p_i \leq p_j$ on $U_i \cap U_j$ for $i \leq j$
 - p is given by $\bigvee p_i$ (ie. $p(x) = p_i(x)$ for greatest i s.t. $p_i(x)$ is defined).

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

Open projections are particularly useful for studying $\text{Cu}(C_0(X))$.

- Atomic representation of $C_0(X) \otimes \mathfrak{M}_n$ gives $L^\infty(X) \otimes \mathfrak{M}_n$, so functional calculus is done pointwise
- An open projection p for $\mathfrak{M}_n \otimes C_0(X)$ is given by a compatible family $(p_i)_{i=0}^n$ of continuous projections:
 - p_i defined on open set U_i , where U_0, \dots, U_n cover X
 - p_i has rank i
 - $p_i \leq p_j$ on $U_i \cap U_j$ for $i \leq j$
 - p is given by $\bigvee p_i$ (ie. $p(x) = p_i(x)$ for greatest i s.t. $p_i(x)$ is defined).

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

Open projections are particularly useful for studying $\text{Cu}(C_0(X))$.

- Atomic representation of $C_0(X) \otimes \mathfrak{M}_n$ gives $L^\infty(X) \otimes \mathfrak{M}_n$, so functional calculus is done pointwise
- An open projection p for $\mathfrak{M}_n \otimes C_0(X)$ is given by a compatible family $(p_i)_{i=0}^n$ of continuous projections:
 - p_i defined on open set U_i , where U_0, \dots, U_n cover X
 - p_i has rank i
 - $p_i \leq p_j$ on $U_i \cap U_j$ for $i \leq j$
 - p is given by $\bigvee p_i$ (ie. $p(x) = p_i(x)$ for greatest i s.t. $p_i(x)$ is defined).

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

Open projections are particularly useful for studying $\text{Cu}(C_0(X))$.

- Atomic representation of $C_0(X) \otimes \mathfrak{M}_n$ gives $L^\infty(X) \otimes \mathfrak{M}_n$, so functional calculus is done pointwise
- An open projection p for $\mathfrak{M}_n \otimes C_0(X)$ is given by a compatible family $(p_i)_{i=0}^n$ of continuous projections:
 - p_i defined on open set U_i , where U_0, \dots, U_n cover X
 - p_i has rank i
 - $p_i \leq p_j$ on $U_i \cap U_j$ for $i \leq j$
 - p is given by $\bigvee p_i$ (ie. $p(x) = p_i(x)$ for greatest i s.t. $p_i(x)$ is defined).

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

Open projections are particularly useful for studying $\text{Cu}(C_0(X))$.

- Atomic representation of $C_0(X) \otimes \mathfrak{M}_n$ gives $L^\infty(X) \otimes \mathfrak{M}_n$, so functional calculus is done pointwise
- An open projection p for $\mathfrak{M}_n \otimes C_0(X)$ is given by a compatible family $(p_i)_{i=0}^n$ of continuous projections:
 - p_i defined on open set U_i , where U_0, \dots, U_n cover X
 - p_i has rank i
 - $p_i \leq p_j$ on $U_i \cap U_j$ for $i \leq j$
 - p is given by $\bigvee p_i$ (ie. $p(x) = p_i(x)$ for greatest i s.t. $p_i(x)$ is defined).

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

- A partial isometry from a polar decomposition is given by a compatible family $(v_i)_{i=0}^n$ of continuous partial isometries:
 - v_i defined on open set U_i where U_0, \dots, U_n cover X
 - v_i has rank i
 - v_j extends v_i on $U_i \cap U_j$ for $i \leq j$
 - $v(x)$ is given by $v_i(x)$ for the greatest i s.t. $v_i(x)$ is defined.

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

- A partial isometry from a polar decomposition is given by a compatible family $(v_i)_{i=0}^n$ of continuous partial isometries:
 - v_i defined on open set U_i where U_0, \dots, U_n cover X
 - v_i has rank i
 - v_j extends v_i on $U_i \cap U_j$ for $i \leq j$
 - $v(x)$ is given by $v_i(x)$ for the greatest i s.t. $v_i(x)$ is defined.

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

- A partial isometry from a polar decomposition is given by a compatible family $(v_i)_{i=0}^n$ of continuous partial isometries:
 - v_i defined on open set U_i where U_0, \dots, U_n cover X
 - v_i has rank i
 - v_j extends v_i on $U_i \cap U_j$ for $i \leq j$
 - $v(x)$ is given by $v_i(x)$ for the greatest i s.t. $v_i(x)$ is defined.

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

- A partial isometry from a polar decomposition is given by a compatible family $(v_i)_{i=0}^n$ of continuous partial isometries:
 - v_i defined on open set U_i where U_0, \dots, U_n cover X
 - v_i has rank i
 - v_j extends v_i on $U_i \cap U_j$ for $i \leq j$
 - $v(x)$ is given by $v_i(x)$ for the greatest i s.t. $v_i(x)$ is defined.

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

- A partial isometry from a polar decomposition is given by a compatible family $(v_i)_{i=0}^n$ of continuous partial isometries:
 - v_i defined on open set U_i where U_0, \dots, U_n cover X
 - v_i has rank i
 - v_j extends v_i on $U_i \cap U_j$ for $i \leq j$
 - $v(x)$ is given by $v_i(x)$ for the greatest i s.t. $v_i(x)$ is defined.

Open Projections in $C_0(X)$

X 2nd countable, l.c., Hausdorff

Consider the case that p, q are constant rank open projections (thus belong to $C_b(X)$):

- $p \precsim_{Cuntz} q$ iff for every compact set $K \subset X$, $p|_K \precsim_{M-vN} q|_K$.
- **Not** the same as $p \precsim_{M-vN} q$ in $C_b(X)$.

Open Projections in $C_0(X)$

X 2nd countable, l.c., Hausdorff

Consider the case that p, q are constant rank open projections (thus belong to $C_b(X)$):

- $p \precsim_{Cuntz} q$ iff for every compact set $K \subset X$, $p|_K \precsim_{M-vN} q|_K$.
- Not the same as $p \precsim_{M-vN} q$ in $C_b(X)$.

Open Projections in $C_0(X)$

X 2nd countable, l.c., Hausdorff

Consider the case that p, q are constant rank open projections (thus belong to $C_b(X)$):

- $p \precsim_{Cuntz} q$ iff for every compact set $K \subset X$, $p|_K \precsim_{M-vN} q|_K$.
- **Not** the same as $p \precsim_{M-vN} q$ in $C_b(X)$.

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

- For stabilized Cuntz semigroup, infinite rank is possible, so above decompositions don't work.
- To study $\text{Cu}_s(C_0(X))$, we approximate elements by those in $\text{Cu}(C_0(X))$.

Open Projections in $C_0(X)$

X 2nd ctble. l.c. Hausdorff

- For stabilized Cuntz semigroup, infinite rank is possible, so above decompositions don't work.
- To study $\text{Cu}_s(C_0(X))$, we approximate elements by those in $\text{Cu}(C_0(X))$.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

For open projection p , let $R_{=i}(p) := \{x \in X : \text{Rank } p(x) = i\}$.

Theorem 1. (Robert-T)

For open projections p, q of $\mathcal{K} \otimes C_0(X)$,
 $p \precsim_{\text{Cuntz}} q$ iff for each $i, j \in \mathbb{N}$,

$$p|_{R_{=i}(p) \cap R_{=j}(q)} \precsim_{\text{Cuntz}} q|_{R_{=i}(p) \cap R_{=j}(q)}.$$

Theorem 2. (Robert-T)

Given any bounded l.s.c. $r : X \rightarrow \mathbb{N}$ and any (not necessarily compatible) family of continuous projections (p_i) s.t.

- p_i is defined on $r^{-1}(\{i\})$
- p_i has rank i ,

\exists open projection p of $\mathfrak{M}_m \otimes C_0(X)$ s.t. $p|_{r^{-1}(\{i\})} \sim_{\text{Cuntz}} p_i$.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

For open projection p , let $R_{=i}(p) := \{x \in X : \text{Rank } p(x) = i\}$.

Theorem 1. (Robert-T)

For open projections p, q of $\mathcal{K} \otimes C_0(X)$,
 $p \precsim_{\text{Cuntz}} q$ iff for each $i, j \in \mathbb{N}$,

$$p|_{R_{=i}(p) \cap R_{=j}(q)} \precsim_{\text{Cuntz}} q|_{R_{=i}(p) \cap R_{=j}(q)}.$$

Theorem 2. (Robert-T)

Given any bounded l.s.c. $r : X \rightarrow \mathbb{N}$ and any (not necessarily compatible) family of continuous projections (p_i) s.t.

- p_i is defined on $r^{-1}(\{i\})$
- p_i has rank i ,

\exists open projection p of $\mathfrak{M}_m \otimes C_0(X)$ s.t. $p|_{r^{-1}(\{i\})} \sim_{\text{Cuntz}} p_i$.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

For open projection p , let $R_{=i}(p) := \{x \in X : \text{Rank } p(x) = i\}$.

Theorem 1. (Robert-T)

For open projections p, q of $\mathcal{K} \otimes C_0(X)$,
 $p \precsim_{\text{Cuntz}} q$ iff for each $i, j \in \mathbb{N}$,

$$p|_{R_{=i}(p) \cap R_{=j}(q)} \precsim_{\text{Cuntz}} q|_{R_{=i}(p) \cap R_{=j}(q)}.$$

Theorem 2. (Robert-T)

Given any bounded l.s.c. $r : X \rightarrow \mathbb{N}$ and any (not necessarily compatible) family of continuous projections (p_i) s.t.

- p_i is defined on $r^{-1}(\{i\})$
- p_i has rank i ,

\exists open projection p of $\mathfrak{M}_m \otimes C_0(X)$ s.t. $p|_{r^{-1}(\{i\})} \sim_{\text{Cuntz}} p_i$.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

For open projection p , let $R_{=i}(p) := \{x \in X : \text{Rank } p(x) = i\}$.

Theorem 1. (Robert-T)

For open projections p, q of $\mathcal{K} \otimes C_0(X)$,
 $p \precsim_{\text{Cuntz}} q$ iff for each $i, j \in \mathbb{N}$,

$$p|_{R_{=i}(p) \cap R_{=j}(q)} \precsim_{\text{Cuntz}} q|_{R_{=i}(p) \cap R_{=j}(q)}.$$

Theorem 2. (Robert-T)

Given any bounded l.s.c. $r : X \rightarrow \mathbb{N}$ and any (not necessarily compatible) family of continuous projections (p_i) s.t.

- p_i is defined on $r^{-1}(\{i\})$
- p_i has rank i ,

\exists open projection p of $\mathfrak{M}_m \otimes C_0(X)$ s.t. $p|_{r^{-1}(\{i\})} \sim_{\text{Cuntz}} p_i$.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

Description of $\text{Cu}(C_0(X))$.

Elements of $\text{Cu}(C_0(X))$ are pairs $(r, (p_i))$ where

- $r : X \rightarrow \mathbb{N}$ is bounded and l.s.c.
- For each $i \in \mathbb{N}$, p_i is a constant rank i element of $\text{Cu}(C_0(r^{-1}(\{i\})))$

$(r, (p_i)) \leq (r', (p'_i))$ iff $p_i \precsim_{\text{Cuntz}} p'_i$ where both defined, $\forall i, j$

- Have Cuntz order of constant rank elements in terms of M-vN equivalence of restrictions, so this describes $\text{Cu}(C_0(X))$ in terms of $V(Y)$ for compact $Y \subset X$.
- For $\text{Cu}_s(C_0(X))$, Thm. 1 describes the order, but don't have a nice description of what data arises.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

Description of $\text{Cu}(C_0(X))$.

Elements of $\text{Cu}(C_0(X))$ are pairs $(r, (p_i))$ where

- $r : X \rightarrow \mathbb{N}$ is bounded and l.s.c.
- For each $i \in \mathbb{N}$, p_i is a constant rank i element of $\text{Cu}(C_0(r^{-1}(\{i\})))$

$(r, (p_i)) \leq (r', (p'_i))$ iff $p_i \precsim_{\text{Cuntz}} p'_j$ where both defined, $\forall i, j$

- Have Cuntz order of constant rank elements in terms of M-vN equivalence of restrictions, so this describes $\text{Cu}(C_0(X))$ in terms of $V(Y)$ for compact $Y \subset X$.
- For $\text{Cu}_s(C_0(X))$, Thm. 1 describes the order, but don't have a nice description of what data arises.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

Description of $\text{Cu}(C_0(X))$.

Elements of $\text{Cu}(C_0(X))$ are pairs $(r, (p_i))$ where

- $r : X \rightarrow \mathbb{N}$ is bounded and l.s.c.
- For each $i \in \mathbb{N}$, p_i is a constant rank i element of $\text{Cu}(C_0(r^{-1}(\{i\})))$

$(r, (p_i)) \leq (r', (p'_i))$ iff $p_i \precsim_{\text{Cuntz}} p_j$ where both defined, $\forall i, j$

- Have Cuntz order of constant rank elements in terms of M-vN equivalence of restrictions, so this describes $\text{Cu}(C_0(X))$ in terms of $V(Y)$ for compact $Y \subset X$.
- For $\text{Cu}_s(C_0(X))$, Thm. 1 describes the order, but don't have a nice description of what data arises.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

Description of $\text{Cu}(C_0(X))$.

Elements of $\text{Cu}(C_0(X))$ are pairs $(r, (p_i))$ where

- $r : X \rightarrow \mathbb{N}$ is bounded and l.s.c.
- For each $i \in \mathbb{N}$, p_i is a constant rank i element of $\text{Cu}(C_0(r^{-1}(\{i\})))$

$(r, (p_i)) \leq (r', (p'_i))$ iff $p_i \precsim_{\text{Cuntz}} p_j$ where both defined, $\forall i, j$

- Have Cuntz order of constant rank elements in terms of M-vN equivalence of restrictions, so this describes $\text{Cu}(C_0(X))$ in terms of $V(Y)$ for compact $Y \subset X$.
- For $\text{Cu}_s(C_0(X))$, Thm. 1 describes the order, but don't have a nice description of what data arises.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

Description of $\text{Cu}(C_0(X))$.

Elements of $\text{Cu}(C_0(X))$ are pairs $(r, (p_i))$ where

- $r : X \rightarrow \mathbb{N}$ is bounded and l.s.c.
- For each $i \in \mathbb{N}$, p_i is a constant rank i element of $\text{Cu}(C_0(r^{-1}(\{i\})))$

$(r, (p_i)) \leq (r', (p'_i))$ iff $p_i \precsim_{\text{Cuntz}} p'_j$ where both defined, $\forall i, j$

- Have Cuntz order of constant rank elements in terms of M-vN equivalence of restrictions, so this describes $\text{Cu}(C_0(X))$ in terms of $V(Y)$ for compact $Y \subset X$.
- For $\text{Cu}_s(C_0(X))$, Thm. 1 describes the order, but don't have a nice description of what data arises.

Dimension Three Spectrum

X be 2nd countable, l.c., Hausdorff, $\dim X \leq 3$.

Description of $\text{Cu}(C_0(X))$.

Elements of $\text{Cu}(C_0(X))$ are pairs $(r, (p_i))$ where

- $r : X \rightarrow \mathbb{N}$ is bounded and l.s.c.
- For each $i \in \mathbb{N}$, p_i is a constant rank i element of $\text{Cu}(C_0(r^{-1}(\{i\})))$

$(r, (p_i)) \leq (r', (p'_i))$ iff $p_i \precsim_{\text{Cuntz}} p_j$ where both defined, $\forall i, j$

- Have Cuntz order of constant rank elements in terms of M-vN equivalence of restrictions, so this describes $\text{Cu}(C_0(X))$ in terms of $V(Y)$ for compact $Y \subset X$.
- For $\text{Cu}_s(C_0(X))$, Thm. 1 describes the order, but don't have a nice description of what data arises.

Outlook

Applications of dim. 3 description?

- Can show $Cu_s(C_0(X))$ has **weak cancellation**, ie. if $a + c \ll b + c$ then $a \leq b$.
- May be interesting to look at $Cu_s(A)$ where A is AH with dimension bounded by 3
 - Gong: Includes all simple AH with slow dimension growth
 - Could help understand Elliott-Gong-Li classification
 - Includes $B \otimes C_0((0, 1])$ where B is AH with dimension bounded by 2
 - Robert-Santiago: $Cu_s(B \otimes C_0((0, 1]))$ occurs in classifying homomorphisms $C_0((0, 1]) \rightarrow B$, for such B .

Outlook

Applications of dim. 3 description?

- Can show $\text{Cu}_s(C_0(X))$ has **weak cancellation**, ie. if $a + c \ll b + c$ then $a \leq b$.
- May be interesting to look at $\text{Cu}_s(A)$ where A is AH with dimension bounded by 3
 - Gong: Includes all simple AH with slow dimension growth
 - Could help understand Elliott-Gong-Li classification
 - Includes $B \otimes C_0((0, 1])$ where B is AH with dimension bounded by 2
 - Robert-Santiago: $\text{Cu}_s(B \otimes C_0((0, 1]))$ occurs in classifying homomorphisms $C_0((0, 1]) \rightarrow B$, for such B .

Outlook

Applications of dim. 3 description?

- Can show $\mathrm{Cu}_s(C_0(X))$ has **weak cancellation**, ie. if $a + c \ll b + c$ then $a \leq b$.
- May be interesting to look at $\mathrm{Cu}_s(A)$ where A is AH with dimension bounded by 3
 - Gong: Includes all simple AH with slow dimension growth
 - Could help understand Elliott-Gong-Li classification
 - Includes $B \otimes C_0((0, 1])$ where B is AH with dimension bounded by 2
 - Robert-Santiago: $\mathrm{Cu}_s(B \otimes C_0((0, 1]))$ occurs in classifying homomorphisms $C_0((0, 1]) \rightarrow B$, for such B .

Outlook

Applications of dim. 3 description?

- Can show $\mathrm{Cu}_s(C_0(X))$ has **weak cancellation**, ie. if $a + c \ll b + c$ then $a \leq b$.
- May be interesting to look at $\mathrm{Cu}_s(A)$ where A is AH with dimension bounded by 3
 - Gong: Includes all simple AH with slow dimension growth
 - Could help understand Elliott-Gong-Li classification
 - Includes $B \otimes C_0((0, 1])$ where B is AH with dimension bounded by 2
 - Robert-Santiago: $\mathrm{Cu}_s(B \otimes C_0((0, 1]))$ occurs in classifying homomorphisms $C_0((0, 1]) \rightarrow B$, for such B .

Outlook

Applications of dim. 3 description?

- Can show $\mathrm{Cu}_s(C_0(X))$ has **weak cancellation**, ie. if $a + c \ll b + c$ then $a \leq b$.
- May be interesting to look at $\mathrm{Cu}_s(A)$ where A is AH with dimension bounded by 3
 - Gong: Includes all simple AH with slow dimension growth
 - Could help understand Elliott-Gong-Li classification
 - Includes $B \otimes C_0((0, 1])$ where B is AH with dimension bounded by 2
 - Robert-Santiago: $\mathrm{Cu}_s(B \otimes C_0((0, 1]))$ occurs in classifying homomorphisms $C_0((0, 1]) \rightarrow B$, for such B .

Outlook

Applications of dim. 3 description?

- Can show $\text{Cu}_s(C_0(X))$ has **weak cancellation**, ie. if $a + c \ll b + c$ then $a \leq b$.
- May be interesting to look at $\text{Cu}_s(A)$ where A is AH with dimension bounded by 3
 - Gong: Includes all simple AH with slow dimension growth
 - Could help understand Elliott-Gong-Li classification
 - Includes $B \otimes C_0((0, 1])$ where B is AH with dimension bounded by 2
 - Robert-Santiago: $\text{Cu}_s(B \otimes C_0((0, 1]))$ occurs in classifying homomorphisms $C_0((0, 1]) \rightarrow B$, for such B .

Outlook

Applications of dim. 3 description?

- Can show $\mathrm{Cu}_s(C_0(X))$ has **weak cancellation**, ie. if $a + c \ll b + c$ then $a \leq b$.
- May be interesting to look at $\mathrm{Cu}_s(A)$ where A is AH with dimension bounded by 3
 - Gong: Includes all simple AH with slow dimension growth
 - Could help understand Elliott-Gong-Li classification
 - Includes $B \otimes C_0((0, 1])$ where B is AH with dimension bounded by 2
 - Robert-Santiago: $\mathrm{Cu}_s(B \otimes C_0((0, 1]))$ occurs in classifying homomorphisms $C_0((0, 1]) \rightarrow B$, for such B .

Outlook

More General Commutative C^* -algebras

- General goal is to describe $\text{Cu}(C_0(X))$ for $\dim X < \infty$, in terms of $V(Y)$, $Y \subset X$ closed.

Conjecture.

For $[a], [b] \in \text{Cu}(C_0(X))$, $[a] \leq [b]$ iff for every $Y \subset X$ compact, and every continuous projection p on Y ,

$$p \precsim_{\text{Cuntz}} a|_Y \Rightarrow p \precsim_{\text{Cuntz}} b|_Y.$$

- Thm. 1 \Rightarrow conjecture holds for $\dim X \leq 3$.
- Also, conjecture holds when $[a], [b]$ have constant rank.
- Even for $\dim X = 4$, both Thm. 1 and Thm. 2 fail.

Outlook

More General Commutative C^* -algebras

- General goal is to describe $\text{Cu}(C_0(X))$ for $\dim X < \infty$, in terms of $V(Y)$, $Y \subset X$ closed.

Conjecture.

For $[a], [b] \in \text{Cu}(C_0(X))$, $[a] \leq [b]$ iff for every $Y \subset X$ compact, and every continuous projection p on Y ,

$$p \precsim_{\text{Cuntz}} a|_Y \Rightarrow p \precsim_{\text{Cuntz}} b|_Y.$$

- Thm. 1 \Rightarrow conjecture holds for $\dim X \leq 3$.
- Also, conjecture holds when $[a], [b]$ have constant rank.
- Even for $\dim X = 4$, both Thm. 1 and Thm. 2 fail.

Outlook

More General Commutative C^* -algebras

- General goal is to describe $\text{Cu}(C_0(X))$ for $\dim X < \infty$, in terms of $V(Y)$, $Y \subset X$ closed.

Conjecture.

For $[a], [b] \in \text{Cu}(C_0(X))$, $[a] \leq [b]$ iff for every $Y \subset X$ compact, and every continuous projection p on Y ,

$$p \precsim_{\text{Cuntz}} a|_Y \Rightarrow p \precsim_{\text{Cuntz}} b|_Y.$$

- Thm. 1 \Rightarrow conjecture holds for $\dim X \leq 3$.
- Also, conjecture holds when $[a], [b]$ have constant rank.
- Even for $\dim X = 4$, both Thm. 1 and Thm. 2 fail.

Outlook

More General Commutative C^* -algebras

- General goal is to describe $\text{Cu}(C_0(X))$ for $\dim X < \infty$, in terms of $V(Y)$, $Y \subset X$ closed.

Conjecture.

For $[a], [b] \in \text{Cu}(C_0(X))$, $[a] \leq [b]$ iff for every $Y \subset X$ compact, and every continuous projection p on Y ,

$$p \precsim_{\text{Cuntz}} a|_Y \Rightarrow p \precsim_{\text{Cuntz}} b|_Y.$$

- Thm. 1 \Rightarrow conjecture holds for $\dim X \leq 3$.
- Also, conjecture holds when $[a], [b]$ have constant rank.
- Even for $\dim X = 4$, both Thm. 1 and Thm. 2 fail.

Outlook

More General Commutative C^* -algebras

- General goal is to describe $\text{Cu}(C_0(X))$ for $\dim X < \infty$, in terms of $V(Y)$, $Y \subset X$ closed.

Conjecture.

For $[a], [b] \in \text{Cu}(C_0(X))$, $[a] \leq [b]$ iff for every $Y \subset X$ compact, and every continuous projection p on Y ,

$$p \precsim_{\text{Cuntz}} a|_Y \Rightarrow p \precsim_{\text{Cuntz}} b|_Y.$$

- Thm. 1 \Rightarrow conjecture holds for $\dim X \leq 3$.
- Also, conjecture holds when $[a], [b]$ have constant rank.
- Even for $\dim X = 4$, both Thm. 1 and Thm. 2 fail.