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The Setting

X is a locally compact Hausdorff space

O(X ) is the σ-algebra of Borel sets of X

H is a finite or separable Hilbert space

B(H) is the algebra of all bounded operators on H
T (H) is the Banach space of all trace-class operators: all operators in
B(H) which have a finite trace under any orthonormal basis

The convex subset S(H) ⊂ T (H) of all positive, trace-one trace-class
operators ρ (called states or density operators)

We are interested in positive operator-valued measures ν : O(X )→ B(H)
and ν-integrable functions X → B(H). Why? The desire for a notion of
an operator-valued averaging, i.e., the quantum expected value of a
quantum random variable. To define majorization through the use of
bistochastic operators in this setting.
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Positive Operator-valued Measures

Definition

A map ν : O(X )→ B(H)+ is a positive operator-valued measure (POVM)
if it is ultraweakly countably additive: for every countable collection
{Ek}k∈N ⊆ O(X ) with Ei ∩ Ej = ∅ for i 6= j we have

ν

(⋃
k∈N

Ek

)
=
∑
k∈N

ν(Ek) ,

where the convergence on the right side of the equation above is with
respect to the ultraweak topology of B(H), that is,

Tr

(
s

n∑
k=1

ν(Ek)

)
→ Tr

(
s
∞∑
k=1

ν(Ek)

)
, ∀s ∈ S(H).
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Absolute Continuity

Definition

A (classical or operator-valued) measure ω1 is absolutely continuous with
respect to either a classical or operator-valued measure ω2, denoted
ω1 �ac ω2, if ω1(E ) = 0 whenever ω2(E ) = 0, where E ∈ O(X ) (for
classical measures, O(X ) is typically denoted by Σ) and 0 is interpreted as
either the scalar zero or the zero operator, as applicable.

Let ν ∈ POVMH(X ). For a fixed state ρ ∈ S(H), the induced complex
measure νρ on X is defined by νρ(E ) = Tr(ρν(E )) for all E ∈ O(X ). Note:
ν and νρ are mutually absolutely continuous for any full-rank ρ ∈ S(H).
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Building a Radon-Nikodým derivative

Let νi ,j be the complex measure defined by νi ,j(E ) = 〈ν(E )ej , ei 〉,
E ∈ O(X ), where {ek} form an orthonormal basis for H. Let ρ ∈ S(H) be
full-rank. Then νi ,j �ac νρ and so, by the classical Radon-Nikodým

theorem, there is a unique
dνi,j
dνρ
∈ L1(X , νρ) such that

νi ,j(E ) =

∫
E

dνi ,j
dνρ

dνρ, E ∈ O(X ).

One can then define the Radon-Nikodým derivative of ν with respect to νρ
to be

dν

dνρ
=
∑
i ,j≥1

dνi ,j
dνρ

⊗ ei ,j .
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Quantum Random Variables

Definition

An operator-valued function f : X → B(H) that is Borel measurable (that
is, the associated complex-valued functions x → Tr(sf (x)) are Borel
measurable functions for every state s ∈ S(H)) is called a quantum
random variable.

The Radon-Nikodým derivative dν
dνρ

is said to exist if it is a quantum

random variable; i.e. it takes every x to a bounded operator. If dν
dνρ0

exists

for some full-rank ρ0 ∈ S(H), then dν
dνρ

exists for all full-rank ρ ∈ S(H), so
there is no need to specify a particular full-rank ρ0.
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Integrability of a Quantum Random Variable wrt a POVM

Definition

Let ν : O(X )→ B(H) be a POVM such that dν
dνρ

exists. A positive

quantum random variable f : X → B(H) is ν-integrable if the function

fs(x) = Tr

(
s

(
dν

dνρ
(x)

)1/2

f (x)

(
dν

dνρ
(x)

)1/2
)

is νρ-integrable for every state s ∈ S(H).
If f is ν-integrable then the integral of f with respect to ν, denoted∫
X fdν, is implicitly defined by the formula

Tr

(
s

∫
X
fdν

)
=

∫
X
fsdνρ.
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Notes

A particularly nice case: If ν = µIH for a positive complex measure µ then
we know that dν

dνρ
= IH and if f = [fi ,j ] is taken with respect to an

orthonormal basis in H then integration is defined entrywise:∫
X
fdν =

[∫
X
fi ,jdµ

]
.

What about Quantum Random Variables that are not Positive?
Any quantum random variable f : X → B(H) can be decomposed as the
sum of four positive quantum random variables (e.g.
(Ref )+, (Ref )−, (Imf )+, and (Imf )− ). The definition of ν-integrable
can thus be extended to arbitrary quantum random variables provided all
four positive functions are ν-integrable.
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A generalization of the L1-norm in the POVM context

Definition

Let ν ∈ POVMH(X ) and define

L1H(X , ν) = span{f : X → B(H) : ν-integrable, positive quantum

random variable}.

For every f ∈ L1H(X , ν) define

‖f ‖1 = inf

{∥∥∥∥∥
∫
X

4∑
k=1

fk dν

∥∥∥∥∥ : f = f1 − f2 + i(f3 − f4), fk ∈ L,

fk ≥ 0, k = 1, . . . , 4}.

We may write ‖f ‖1,ν to emphasize the POVM ν that f is being
integrated against.
This is a semi-norm on L1H(X , ν).

S. Plosker (Brandon U) Operator-valued functions that are integrable against a POVM arXiv:2005.00005 9 / 25



A generalization of the L1-norm in the POVM context

Definition

Let ν ∈ POVMH(X ) and define

L1H(X , ν) = span{f : X → B(H) : ν-integrable, positive quantum

random variable}.

For every f ∈ L1H(X , ν) define

‖f ‖1 = inf

{∥∥∥∥∥
∫
X

4∑
k=1

fk dν

∥∥∥∥∥ : f = f1 − f2 + i(f3 − f4), fk ∈ L,

fk ≥ 0, k = 1, . . . , 4}.

We may write ‖f ‖1,ν to emphasize the POVM ν that f is being
integrated against.
This is a semi-norm on L1H(X , ν).

S. Plosker (Brandon U) Operator-valued functions that are integrable against a POVM arXiv:2005.00005 9 / 25



A generalization of the L1-norm in the POVM context

Definition

Let ν ∈ POVMH(X ) and define

L1H(X , ν) = span{f : X → B(H) : ν-integrable, positive quantum

random variable}.

For every f ∈ L1H(X , ν) define

‖f ‖1 = inf

{∥∥∥∥∥
∫
X

4∑
k=1

fk dν

∥∥∥∥∥ : f = f1 − f2 + i(f3 − f4), fk ∈ L,

fk ≥ 0, k = 1, . . . , 4}.

We may write ‖f ‖1,ν to emphasize the POVM ν that f is being
integrated against.
This is a semi-norm on L1H(X , ν).

S. Plosker (Brandon U) Operator-valued functions that are integrable against a POVM arXiv:2005.00005 9 / 25



The von Neumann algebra of essentially bounded quantum
random variables

Let

L∞H (X , ν) = {h : X → B(H) qrv : ∃M ≥ 0, ‖h(x)‖ ≤ M a.e wrt ν}
= L∞(X , νρ) ⊗̄ B(H)

Note that the norm this comes with is defined as

‖f (x)‖∞ :=
∥∥∥‖f (x)‖

∥∥∥
L∞(X ,νρ)

since ‖f (x)‖ ∈ L∞(X , νρ).
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Proposition

Suppose H = Cn, ν ∈ POVMH(X ) such that dν
dνρ
∈ Mn is invertible

almost everywhere ( dν
dνρ
∈ M−1n a.e.), and dν

dνρ
, dν
dνρ

−1 ∈ L∞H (X , ν). For

f ∈ L1H(X , ν) self-adjoint we have

‖f ‖1 ≤
∥∥∥∥∫

X
|f (x)|dν

∥∥∥∥ ≤ ∥∥∥∥∫
X
‖f (x)‖Indν

∥∥∥∥ ≤ n

∥∥∥∥ dν

dνρ

∥∥∥∥
∞

∥∥∥∥ dν

dνρ

−1∥∥∥∥
∞
‖f ‖1.
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Recall for ν ∈ POVMH(X ) we have

L1H(X , ν) = span{f : X → B(H) : ν-integrable, positive quantum

random variable}.

Define I = {f ∈ L1H(X , ν) : ‖f ‖1 = 0} and let L1H(X , ν) = L1H(X , ν)/I.
The previous lemma implies that the 1-topology on L1H(X , ν) is stronger
than the topology (fn)s → fs for all s ∈ S(H).

Theorem

L1H(X , ν) is a Banach space, that is, it is complete in the 1-norm for
ν ∈ POVMH(X ) where dν

dνρ
exists.
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How to Relate L∞H (X , ν) and L1
H(X , ν)

Proposition

Suppose dν
dνρ

(x) ∈ B(H)−1 for all x ∈ X and dν
dνρ

, dν
dνρ

−1 ∈ L∞H (X , ν).

There is a natural inclusion of L∞H (X , ν) in L1H(X , ν) with

‖g‖1 ≤ 2‖g‖∞‖ν(X )‖, ∀g ∈ L∞H (X , ν).

Moreover, L∞H (X , ν) is dense in L1H(X , ν) in the state topology, (fn)s → fs
for all s ∈ S(H).
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Finite vs Infinite Dimensions

This proposition implies that if H = Cn then L1H(X , ν) = L∞H (X , ν)
‖·‖1

. In
infinite dimensions this will not be the case: consider X = [0, 1], H
countably infinite dimensional, and ν = µIH where µ is Lebesgue measure.
Then f (x) =

∑
n≥1 2nχ( 1

2n
, 1
2n−1 )

(x)en,n cannot be approximated by

essentially bounded functions in the 1-norm.
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Decreasing Rearrangements

One can define continuous majorization in the context of functions in L1:

Definition

Let (X ,O(X ), µ) be a finite positive measure space and f ∈ L1(X , µ).
The distribution function of f is df : R→ [0, µ(X )] defined by

df (s) = µ({x : f (x) > s})

and the decreasing rearrangement of f is f ↓ : [0, µ(X )]→ R defined by

f ↓(t) = sup{s : df (s) ≥ t}.
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Majorization

Definition

Let (Xi ,O(Xi ), µi ), i = 1, 2, be finite measure spaces for which
a = µ1(X1) = µ2(X2). Then f ∈ L1(X1, µ1) is majorized by
g ∈ L1(X2, µ2), denoted f ≺ g , if∫ t

0
f ↓dx ≤

∫ t

0
g↓dx ∀ 0 ≤ t ≤ a

and

∫ a

0
g↓dx =

∫ a

0
f ↓dx ,

where integration is against Lebesgue measure.
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Bistochastic Operators

An operator B : L1(X1, µ1)→ L1(X2, µ2) between finite measure space
where µ1(X1) = µ2(X2) is called bistochastic, doubly stochastic, or
Markov, if

1 B is positive

2

∫
X2

Bfdµ2 =

∫
X1

fdµ1, and

3 B1 = 1

where 1 here refers to the constant function 1 in each of the spaces
L1(Xi , µi ), i = 1, 2.
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Combining results of Hardy-Littlewood-Pólya, Chong, Ryff,
and Day

Theorem

Let (Xi ,O(Xi ), µi ), i = 1, 2, be finite measure spaces for which
µ1(X1) = µ2(X2). If f ∈ L1(X1, µ1) and g ∈ L1(X2, µ2) then the following
are equivalent:

f ≺ g∫
X1

ψ(f (x))dx ≤
∫
X2

ψ(g(x))dx for all convex functions ψ : R→ R

There is a bistochastic operator B such that Bg = f .

S. Plosker (Brandon U) Operator-valued functions that are integrable against a POVM arXiv:2005.00005 18 / 25



Bistochastic Operators

Definition

A linear operator B is called a bistochastic operator on L1H(X , ν) if

1 B is positive,

2
∫
X Bfdν =

∫
X fdν, ∀f ∈ L1H(X , ν),

3 BIH = IH,

where IH above refers to the constant function IH in L1H(X , ν). The set of
all bistochastic operators on L1H(X , ν) is denoted by B(X , ν).
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Proposition

Every bistochastic operator is contractive with respect to the ‖ · ‖1-norm.

The set of bistochastic operators on the classical L1(X , µ) is denoted
B(L1(X , µ)).

Theorem

If ν = µIH for some finite, positive measure µ, then every
B ∈ B(L1(X , µ)) extends to a bistochastic operator in B(X , ν) by the
formula

B (fA) = B(f )A, ∀f ∈ L1(X , µ), A ∈ B(H).

We will refer to the extension developed in the above theorem by B as well
and the set of such bistochastic operators as B(L1(X , µ)) still. We have
no example of a bistochastic operator on L1H(X , µIH) that does not arise
in this way.
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Variants of Multivariate Majorization

Recall that if f ∈ L1H(X , µI ) and s ∈ T (H) then we define fs ∈ L1(X , µ) by

fs(x) = Tr(sf (x)) ∈ L1(X , µ).

We now introduce several possible majorization partial orders which relate
to multivariate majorization

Definition

Suppose f , g ∈ L1H(X , µI ) and are self-adjoint where µ is a finite, positive,
complex measure. We say that

1 f ≺ g if there exists a bistochastic operator B ∈ B(L1(X , µ)) such
that Bg = f ,

2 f ≺T g if ft ≺ gt for all t ∈ T (H)sa, and

3 f ≺S g if fs ≺ gs for all s ∈ S(H).
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Relating the Three Partial Orders

Proposition

For f , g ∈ L1H([0, 1], µI ) self-adjoint we have that

f ≺ g ⇒ f ≺T g ⇒ f ≺S g .

If H = C then the converse is true. However, these partial orders are
distinct in higher dimensions.
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A Result of Komiya

Komiya (1983): For X ,Y ∈ Mm,n(C), we have that X ≺ Y if and only if
ψ(X ) ≤ ψ(Y ) for every real-valued, permutation-invariant, convex
function ψ on Mm,n(C).

(Note: The convex hull of the permutation matrices is the set of
bistochastic matrices.)

We use the notation Cφ to denote the right-composition operator:
Cφ(f ) = f ◦ φ, and Pinv to denote the set of all invertible
measure-preserving maps of X , where the measure is understood by
context. If φ ∈ Pinv then Cφ is a bistochastic operator.
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Brown (1966) proved a similar convexity result for bistochastic operators
on L1 under some conditions on the measure space. Namely, the convex
hull conv(Cφ : φ ∈ Pinv) of the composition operators of invertible
measure-preserving maps is dense in the bistochastic operators in the weak
operator topology arising from Lp for every 1 < p <∞.

Proposition

Suppose X is a product of unit intervals and µ is the corresponding
product of Lebesgue measures. If B is a bistochastic operator in
B(L1(X , µ)) then there exists a sequence of bistochastic operators
Bi ∈ conv(Cφ : φ ∈ Pinv) such that Bi is WOT-convergent to B.
Moreover, B(L1(X , µ)) is WOT-compact and convex.
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Definition

A real-valued convex function ψ : L1H(X , µI )→ R is said to be
permutation-invariant if for every σ ∈ Pinv we have

ψ(f ◦ σ) = ψ(f ) ∀f ∈ L1H(X , µI ).

Theorem

Suppose X is a product of unit intervals and µ is the corresponding
product of Lebesgue measures. Let f̃ , f ∈ L1H(X , µI ). Then f̃ ≺ f if and
only if ψ(f̃ ) ≤ ψ(f ) for every real-valued, weakly-continuous,
permutation-invariant, convex function on L1H(X , µI ).
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