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The Setting

@ X is a locally compact Hausdorff space

e O(X) is the o-algebra of Borel sets of X

@ H is a finite or separable Hilbert space

@ B(H) is the algebra of all bounded operators on H

@ T (H) is the Banach space of all trace-class operators: all operators in
B(H) which have a finite trace under any orthonormal basis

@ The convex subset S(H) C T(H) of all positive, trace-one trace-class
operators p (called states or density operators)
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@ H is a finite or separable Hilbert space

@ B(H) is the algebra of all bounded operators on H

@ T (H) is the Banach space of all trace-class operators: all operators in
B(H) which have a finite trace under any orthonormal basis

@ The convex subset S(H) C T(H) of all positive, trace-one trace-class
operators p (called states or density operators)

We are interested in positive operator-valued measures v : O(X) — B(H)
and v-integrable functions X — B(#).
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The Setting

@ X is a locally compact Hausdorff space

e O(X) is the o-algebra of Borel sets of X

@ H is a finite or separable Hilbert space

@ B(H) is the algebra of all bounded operators on H

@ T (H) is the Banach space of all trace-class operators: all operators in
B(H) which have a finite trace under any orthonormal basis

@ The convex subset S(H) C T(H) of all positive, trace-one trace-class
operators p (called states or density operators)

We are interested in positive operator-valued measures v : O(X) — B(H)
and v-integrable functions X — B(#). Why? The desire for a notion of
an operator-valued averaging, i.e., the quantum expected value of a
quantum random variable. To define majorization through the use of
bistochastic operators in this setting.
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Positive Operator-valued Measures

Definition
A map v : O(X) — B(H)+ is a positive operator-valued measure (POVM)

if it is ultraweakly countably additive: for every countable collection
{Ek}ken € O(X) with E; N Ej = () for i # j we have

v (U Ek> => u(E),

keN keN

where the convergence on the right side of the equation above is with
respect to the ultraweak topology of B(#H), that is,

Tr (sznjy(Ek)> — Tr <siy(Ek)> , VseS(H).

k=1 k=1
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Absolute Continuity

Definition

A (classical or operator-valued) measure w; is absolutely continuous with
respect to either a classical or operator-valued measure wy, denoted

w1 Kac w2, if w1(E) = 0 whenever wy(E) = 0, where E € O(X) (for
classical measures, O(X) is typically denoted by ¥) and 0 is interpreted as
either the scalar zero or the zero operator, as applicable.
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Absolute Continuity

Definition

A (classical or operator-valued) measure w; is absolutely continuous with
respect to either a classical or operator-valued measure wy, denoted

w1 Kac w2, if w1(E) = 0 whenever wy(E) = 0, where E € O(X) (for
classical measures, O(X) is typically denoted by ¥) and 0 is interpreted as
either the scalar zero or the zero operator, as applicable.

Let v € POVMy/(X). For a fixed state p € S(#), the induced complex
measure v, on X is defined by v,(E) = Tr(pv(E)) for all E € O(X).
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Absolute Continuity

Definition

A (classical or operator-valued) measure w; is absolutely continuous with
respect to either a classical or operator-valued measure wy, denoted

w1 Kac wo, if wi(E) = 0 whenever wy(E) = 0, where E € O(X) (for
classical measures, O(X) is typically denoted by ¥) and 0 is interpreted as
either the scalar zero or the zero operator, as applicable.

Let v € POVMy/(X). For a fixed state p € S(#), the induced complex
measure v, on X is defined by v,(E) = Tr(pv(E)) for all E € O(X). Note:
v and v, are mutually absolutely continuous for any full-rank p € S(H).

S. Plosker (Brandon U) Operator-valued functions that are integrable against a POVM  arXiv:2005.00005 4 /25



Building a Radon-Nikodym derivative

Let v;; be the complex measure defined by v; ;(E) = (v(E)ej, &),
E € O(X), where {e,} form an orthonormal basis for . Let p € S(H) be
full-rank. Then v;; <, v, and so, by the classical Radon-Nikodym

theorem, there is a unique Z’J € L1(X,v,) such that

dvi;
I/,"J'(E) _/; dyyddl/p, E e O(X)
p

arXiv:2005.00005 5/25
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Building a Radon-Nikodym derivative

Let v;; be the complex measure defined by v; ;(E) = (v(E)ej, &),
E € O(X), where {e,} form an orthonormal basis for . Let p € S(H) be
full-rank. Then v;; <, v, and so, by the classical Radon-Nikodym

theorem, there is a unique Z’J € L1(X,v,) such that

dvi;
I/,"J'(E) _/; dyyddl/p, E e O(X)
p

One can then define the Radon-Nikodym derivative of v with respect to v,

to be
dv - du

dv,
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Quantum Random Variables

Definition

An operator-valued function f : X — B(#) that is Borel measurable (that
is, the associated complex-valued functions x — Tr(sf(x)) are Borel
measurable functions for every state s € S(#)) is called a quantum
random variable.
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Quantum Random Variables

Definition

An operator-valued function f : X — B(#) that is Borel measurable (that
is, the associated complex-valued functions x — Tr(sf(x)) are Borel
measurable functions for every state s € S(#)) is called a quantum
random variable.

The Radon-Nikodym derivative 57” is said to exist if it is a quantum
P

random variable; i.e. it takes every x to a bounded operator.
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Quantum Random Variables

Definition

An operator-valued function f : X — B(#) that is Borel measurable (that
is, the associated complex-valued functions x — Tr(sf(x)) are Borel
measurable functions for every state s € S(#)) is called a quantum
random variable.

The Radon-Nikodym derivative d;’ is said to exist if it is a quantum
P
du

random variable; i.e. it takes every x to a bounded operator. If exists

for some full-rank pg € S(H), then S exists for all full-rank p € S(H) so
there is no need to specify a partlcular full-rank po.
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Integrability of a Quantum Random Variable wrt a POVM

Let v : O(X) — B(H) be a POVM such that j—y‘; exists. A positive
quantum random variable f : X — B(#) is v-integrable if the function

() = Tr ( (jjp(x))m (x) (jjp(x))l/z)

is v -integrable for every state s € S(H).
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Integrability of a Quantum Random Variable wrt a POVM

Let v : O(X) — B(H) be a POVM such that j—y‘; exists. A positive
quantum random variable f : X — B(#) is v-integrable if the function

Bl =T ( (200) " 19 (jjp(x))l/z)

is v -integrable for every state s € S(H).
If f is v-integrable then the integral of f with respect to v, denoted
[x fdv, is implicitly defined by the formula

Tr (s/ fdu) :/ fsdv,.
X X
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A particularly nice case: If v = puly for a positive complex measure p then
we know that 2% = f and if f = [f; ;] is taken with respect to an
orthonormal baS|s in H then integration is defined entrywise:

foo- 1w
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A particularly nice case: If v = puly for a positive complex measure p then
we know that 2% = f and if f = [f; ;] is taken with respect to an
orthonormal baS|s in H then integration is defined entrywise:

foo- 1w

What about Quantum Random Variables that are not Positive?

Any quantum random variable f : X — B(H) can be decomposed as the
sum of four positive quantum random variables (e.g.

(Ref)4, (Ref)—, (Imf)4, and (Imf)_ ). The definition of v-integrable
can thus be extended to arbitrary quantum random variables provided all
four positive functions are v-integrable.

S. Plosker (Brandon U) Operator-valued functions that are integrable against a POVM  arXiv:2005.00005 8 /25



A generalization of the L!-norm in the POVM context

Let v € POVMy/(X) and define

L£3,(X,v) = span{f: X — B(H) : v-integrable, positive quantum

random variable}.

For every f € £3,(X,v) define

4
Iflly = inf{ /ka dv
X k=1

fo>0,k=1,...,4}

f:ﬂ_f2+’(f5’>_ﬁl)7fk€£7
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A generalization of the L!-norm in the POVM context

Let v € POVMy/(X) and define

L£3,(X,v) = span{f: X — B(H) : v-integrable, positive quantum

random variable}.

For every f € £3,(X,v) define

4
Iflly = inf{ /ka dv
X k=1

fo>0,k=1,...,4}

f:ﬂ_f2+’(f5’>_ﬁl)7fk€£7

We may write |[|f]|1,, to emphasize the POVM v that f is being
integrated against.
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A generalization of the L!-norm in the POVM context

Let v € POVMy/(X) and define

L£3,(X,v) = span{f: X — B(H) : v-integrable, positive quantum
random variable}.

For every f € £3,(X,v) define

4
Iflly = inf{ /ka dv
X k=1

fo>0,k=1,...,4}

f:ﬂ_f2+’(f5’>_ﬁl)7fk€£7

We may write |[|f]|1,, to emphasize the POVM v that f is being
integrated against.
This is a semi-norm on £3,(X, v).
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The von Neumann algebra of essentially bounded quantum

random variables

Let

L (X,v)={h: X = B(H) qrv : IM >0, |h(x)|| < M a.e wrt v}
= L=(X,v) © B(H)
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The von Neumann algebra of essentially bounded quantum

random variables

Let

L (X,v)={h: X = B(H) qrv : IM >0, |h(x)|| < M a.e wrt v}
= L2(X,v,) ® B(H)

Note that the norm this comes with is defined as

1#6Moe = 17|,

since ||f(x)|| € L(X,v,).

S. Plosker (Brandon U) Operator-valued functions that are integrable against a POVM  arXiv:2005.00005 10 / 25



Proposition

Suppose H = C", v € POVMy(X) such that 3~ € I\/I is invertible
almost everywhere (d” € M;! ae.), and 9~ s ,j,j’ e (X, v). For
ferlt(X,v) self—adjomt we have

dv —

dv | |l dv.
dv,

P

<n 1£]]1-

If]lx < X!f(X)\dV )| Indv

(e}
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Recall for v € POVMy(X) we have

E%_[(X,y) = span{f : X — B(H) : v-integrable, positive quantum

random variable}.
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Recall for v € POVMy(X) we have

E%_[(X,y) = span{f : X — B(H) : v-integrable, positive quantum

random variable}.

Define T = {f € £},(X,v) : ||f|1 =0} and let L} (X,v) = £3,(X,v)/T.
The previous lemma implies that the 1-topology on L%Lt(X, v) is stronger
than the topology (f,)s — fs for all s € S(H).

/ 25
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Recall for v € POVMy(X) we have

E%_[(X,y) = span{f : X — B(H) : v-integrable, positive quantum

random variable}.

Define T = {f € £},(X,v) : ||f|1 =0} and let L} (X,v) = £3,(X,v)/T.
The previous lemma implies that the 1-topology on L%Lt(X, v) is stronger
than the topology (f,)s — fs for all s € S(H).

L%_[(X, v) is a Banach space, that is, it is complete in the 1-norm for
v € POVMy(X) where 5’7'; exists.
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How to Relate L37(X,v) and L3,(X,v)

Proposition

Suppose & d(x) € B(H)~ ! for all x € X and j;’ : jy” e LF(X,v).

There is a natural inclusion of L$7(X,v) in L%{(X 1/) with

gl < 2llgllollv(X)l; Ve € LF(X,v).

Moreover, LS (X, v) is dense in L},(X,v) in the state topology, (fn)s — fs
for all s € S(H).
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Finite vs Infinite Dimensions

This proposition implies that if £ = C” then L},(X,v) = L3(X, I/)H.HI. In
infinite dimensions this will not be the case: consider X = [0, 1], H
countably infinite dimensional, and v = uly; where u is Lebesgue measure.
Then f(x) =>_,51 2nX(2%72,,1,1)(X)e"’” cannot be approximated by
essentially bounded functions in the 1-norm.
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Decreasing Rearrangements

One can define continuous majorization in the context of functions in L1:

Definition

Let (X, O(X), i) be a finite positive measure space and f € L*(X, u).
The distribution function of f is df : R — [0, 1(X)] defined by

dr(s) = p({x : f(x) > s})

and the decreasing rearrangement of f is f¥ : [0, u(X)] — R defined by

fi(t) = sup{s : d¢(s) > t}.
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Majorization

Definition

Let (X;, O(X;), i), i = 1,2, be finite measure spaces for which
a=p1(X1) = pa(Xz). Then f € LY(Xq, 1) is majorized by
g € LY(Xo, o), denoted f < g, if

t t
/ Frdx < / gidx Vo<t<a
0 0

a a
and / ghtdx = / frdx,
0 0

where integration is against Lebesgue measure.
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Bistochastic Operators

An operator B : LY(X1, 1) — LY(Xa, i12) between finite measure space

where p1(X1) = pu2(Xz) is called bistochastic, doubly stochastic, or
Markov, if

@ B is positive

(2] Bfduy = fduy, and
Xo X1

©@Bl=1

where 1 here refers to the constant function 1 in each of the spaces
Ll(Xllvlui)v = 17 2.
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Combining results of Hardy-Littlewood-Pdlya, Chong, Ryff,

and Day

Theorem

Let (Xi, O(Xi), pi), i = 1,2, be finite measure spaces for which
p1(X1) = pa(Xa). Iff € LX( X1, u1) and g € LX(Xa, u12) then the following
are equivalent:

e f<g
° P(f(x))dx < ¥(g(x))dx for all convex functions ¢ : R — R
X1 X2

@ There is a bistochastic operator B such that Bg = f.
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Bistochastic Operators

Definition

A linear operator B is called a bistochastic operator on L%{(X, v) if

© B is positive,
Q [ Bfdv = [, fdv, Vfe L} (X,v),
© Bh = Iy,
where /3, above refers to the constant function ky in L}, (X,v). The set of

v
all bistochastic operators on L} (X, v) is denoted by B(X,v).
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Proposition

Every bistochastic operator is contractive with respect to the || - ||1-norm.
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Proposition

Every bistochastic operator is contractive with respect to the || - ||1-norm.

The set of bistochastic operators on the classical L*(X, 1) is denoted
B(LYX, ).

If v = ply for some finite, positive measure (i, then every
B € B(LY(X, 1)) extends to a bistochastic operator in B(X,v) by the
formula

B(fA) = B(f)A, Vf € [}(X,u), Ac B(H).
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Proposition

Every bistochastic operator is contractive with respect to the || - ||1-norm.

The set of bistochastic operators on the classical L*(X, 1) is denoted
B(LYX, ).

If v = ply for some finite, positive measure (i, then every
B € B(LY(X, 1)) extends to a bistochastic operator in B(X,v) by the
formula

B(fA) = B(f)A, Vf € [}(X,u), Ac B(H).

We will refer to the extension developed in the above theorem by B as well
and the set of such bistochastic operators as B(L(X, 1)) still. We have
no example of a bistochastic operator on L}, (X, uly) that does not arise
in this way.
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Variants of Multivariate Majorization

Recall that if f € L}, (X, /) and s € T(H) then we define f; € L*(X, 1) by
fi(x) = Tr(sf(x)) € LX(X, ).

We now introduce several possible majorization partial orders which relate
to multivariate majorization
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Variants of Multivariate Majorization

Recall that if f € L}, (X, /) and s € T(H) then we define f; € L*(X, 1) by
fi(x) = Tr(sf(x)) € LX(X, ).

We now introduce several possible majorization partial orders which relate
to multivariate majorization

Definition
Suppose f, g € L%{(X,#/) and are self-adjoint where p is a finite, positive,
complex measure. We say that
@ f < g if there exists a bistochastic operator B € B(L(X, 1)) such
that Bg = f,
Q@ f<rgiffi <gtforall t € T(H)sa and
Q f<sgiffy<gsforall s e S(H).
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Relating the Three Partial Orders

Proposition

For f,g € L},([0,1], ul) self-adjoint we have that

f<g = f<rg = f<sg.
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Relating the Three Partial Orders

Proposition

For f,g € L},([0,1], ul) self-adjoint we have that

f<g = f<rg = f<sg.

If H = C then the converse is true. However, these partial orders are
distinct in higher dimensions.
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A Result of Komiya

Komiya (1983): For X, Y € My, o(C), we have that X < Y if and only if
P(X) < (Y) for every real-valued, permutation-invariant, convex
function ¢ on My, o(C).
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A Result of Komiya

Komiya (1983): For X, Y € My, o(C), we have that X < Y if and only if
P(X) < (Y) for every real-valued, permutation-invariant, convex
function ¢ on My, o(C).

(Note: The convex hull of the permutation matrices is the set of
bistochastic matrices.)
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A Result of Komiya

Komiya (1983): For X, Y € My, o(C), we have that X < Y if and only if
P(X) < (Y) for every real-valued, permutation-invariant, convex
function ¢ on My, o(C).

(Note: The convex hull of the permutation matrices is the set of
bistochastic matrices.)

We use the notation Cj to denote the right-composition operator:
Cy(f) = f o ¢, and Pj, to denote the set of all invertible
measure-preserving maps of X, where the measure is understood by
context. If ¢ € Pin, then Cy is a bistochastic operator.
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Brown (1966) proved a similar convexity result for bistochastic operators
on L' under some conditions on the measure space. Namely, the convex
hull conv(Cy : ¢ € Piny) of the composition operators of invertible
measure-preserving maps is dense in the bistochastic operators in the weak
operator topology arising from LP for every 1 < p < o0.
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Brown (1966) proved a similar convexity result for bistochastic operators
on L' under some conditions on the measure space. Namely, the convex
hull conv(Cy : ¢ € Piny) of the composition operators of invertible
measure-preserving maps is dense in the bistochastic operators in the weak
operator topology arising from LP for every 1 < p < o0.

Proposition

Suppose X is a product of unit intervals and y is the corresponding
product of Lebesgue measures. If B is a bistochastic operator in
B(LL(X, ;1)) then there exists a sequence of bistochastic operators
Bi € conv(Cy : ¢ € Piny) such that B; is WOT-convergent to B.
Moreover, B(LY(X, 1)) is WOT-compact and convex.
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Definition

A real-valued convex function ¢ : L} (X, ul) — R is said to be
permutation-invariant if for every o € Pi,, we have

Y(foa)=w(f) VFfeLy(X,ul).
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Definition

A real-valued convex function ¢ : L} (X, ul) — R is said to be
permutation-invariant if for every o € Pi,, we have

Y(foa)=w(f) VFfeLy(X,ul).

Suppose X is a product of unit intervals and y is the corresponding
product of Lebesgue measures. Let f,f € L%{(X,ul). Then f < f if and
only if )(F) < 1(f) for every real-valued, weakly-continuous,
permutation-invariant, convex function on L}, (X, pul).
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