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Notation

G - locally compact (LC) group

λ : G → U(L2(G)), λsξ(t) = ξ(s−1t), left regular
representation

Integrated form λ : L1(G) 3 f 7→
∫

G f (s)λs ds ∈ B(L2(G))

VN(G) = {λ(f ) | f ∈ L1(G)}′′ group vN algebra

C∗λ(G) = span‖·‖{λ(f ) | f ∈ L1(G)} reduced C∗-algebra
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Herz–Schur Multipliers

de Cannière–Haagerup ’85 : A bd cts h : G → C is a (CP)
Herz-Schur multiplier if the map

Mh(λs) = h(s)λs s ∈ G ,

extends to a normal CB (CP) map on VN(G).

Any Herz-Schur multiplier necessarily satisfies Mh(λ(f )) = λ(hf ),
hence Mh(C∗λ(G)) ⊆ C∗λ(G).

Examples: Coefficients of uniformly bounded representations.

CP Herz–Schur multipliers ∼ positive definite functions

h : G → C is positive definite if [h(s−1
i sj)] ∈ Mn(C)+ for all

s1, ..., sn ∈ G .

span P(G) ⊆ Herz-Schur mult.
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Amenability
The following are equivalent for a LC group G :

1 G is amenable (i.e., L∞(G) has left invariant state);
2 (Reiter’s P2) ∃ a net (ξi ) of unit vectors in L2(G) for which

‖λsξi − ξi‖ → 0,

uniformly on compact subsets (uc) of G ;
3 (Herz-Schur) ∃ a net (hi ) in P(G) ∩ Cc(G) for which

Mhi → idVN(G) point weak*;

4 (Herz-Schur) ∃ a net (hi ) in P(G) ∩ Cc(G) for which

Mhi → idC∗
λ

(G) point norm;

5 (Losert–Ruan) Herz-Schur multipliers = span P(G).
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W ∗-dynamical systems

A W ∗-dynamical system (M,G , α) consists of
a von Neumann algebra M;

a locally compact group G ;
a homomorphism α : G → Aut(M) such that ∀ x ∈ M,
G 3 s 7→ αs(x) ∈ M is weak* continuous.

Mc = {x ∈ M | s 7→ αs(x) is norm cts} is a weak* dense unital
C∗-subalgebra of M. Note that Mc = M when G is discrete.

α induces a normal injective unital ∗-homomorphism

α : M 3 x → (s 7→ αs−1(x)) ∈ L∞(G)⊗M.

Gn̄M = {α(M)(VN(G)⊗ 1)}′′ ⊆ B(L2(G))⊗M.
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C ∗-dynamical systems

A C∗-dynamical system (A,G , α) consists of
a C∗-algebra A;

a locally compact group G ;
a homomorphism α : G → Aut(A) such that ∀ a ∈ A,
G 3 s 7→ αs(a) ∈ A is norm continuous.

α induces an injective ∗-homomorphism

α : A 3 a→ (s 7→ αs−1(a)) ∈ Cb(G ,A) ⊆ M(C0(G ,A)).

(α, λ⊗ 1) covariant rep and reduced crossed product

G n A = (α× λ)(Cc(G ,A))‖·‖ ⊆ B(L2(G))⊗B(H),

for faithful A ⊆ B(H).
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Herz-Schur Multipliers

Definition (McKee–Todorov–Turowska ’16)
Let (A,G , α) be a C∗-dynamical system. A bd cts h : G → CB(A)
is a (CP) Herz-Schur multiplier if the map

Mh(α(a)(λs ⊗ 1)) = α(h(s)(a))(λs ⊗ 1), a ∈ A, s ∈ G ,

extends to a normal CB (CP) map on (G n A)′′.

Any Herz-Schur multiplier necessarily satisfies

Mh((α× λ)(f )) = (α× λ)(h · f ), f ∈ Cc(G ,A),

where h · f (s) = h(s)(f (s)), s ∈ G .

When (A,G , α) = (C,G , trivial), Mh(λs) = h(s)λs on
VN(G) = C∗λ(G)′′.
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Herz-Schur Multipliers

Example: If ξ ∈ Cc(G ,A), the function

hξ(s)(a) = 〈ξ, (1⊗ a)(λs ⊗ αs)ξ〉

is a CP Herz-Schur multiplier (i.e., Mhξ
is CP)

, where

〈ξ, ζ〉 =
∫

G
ξ(s)∗ζ(s) ds, ξ, ζ ∈ Cc(G ,A).

When (A,G , α) = (C,G , trivial), ξ ∈ Cc(G), hξ(s) = 〈ξ, λsξ〉 lies
in P(G) ∩ Cc(G).

h ∈ Cb(G ,A) is of positive type (with respect to (A,G , α)) if for
every n ∈ N, and s1, ..., sn ∈ G , the matrix [αsi (h(s−1

i sj))] ≥ 0.

If h ∈ Cb(G ,Z (A)) is of positive type then h(s)(a) = h(s)a
defines a CP Herz-Schur multiplier of (A,G , α).
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Amenability

Definition (Zimmer ’77; Anantharaman–Delaroche ’79)
(M,G , α) is amenable if there exists a projection of norm one
P : L∞(G)⊗M → M ∼= 1⊗M for which

P ◦ (λs ⊗ αs) = αs ◦ P, s ∈ G .

Facts:
Zimmer ’77; Anantharaman–Delaroche ’79 : If (M,G , α) is
amenable and M is injective, then Gn̄M is injective. Converse
holds when G is discrete.
(L∞(G/H),G , λ) is amenable iff H is amenable.
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Reiter’s properties

Theorem (Anantharaman–Delaroche ’87)
Let G be discrete. TFAE:

1 ∃ (hi ) positive type functions in Cc(G ,Z (M)) such that
1 hi (e) ≤ 1;
2 limi hi (t) = 1 weak*, t ∈ G.

2 ∃ (ξi ) in Cc(G ,Z (M)) such that
1 〈ξi , ξi〉 ≤ 1;
2 〈ξi , (λt ⊗ αt)ξi〉 → 1 weak*, t ∈ G.

3 ∃ (gi ) in Cc(G ,Z (M)+), such that
1

∑
s∈G gi (s) ≤ 1;

2
∑

s∈G |(λt ⊗ αt)gi (s)− gi (s)| → 0 weak*, t ∈ G.
4 (M,G , α) is amenable.
5 (Z (M),G , α) is amenable.

Question: Does the Theorem hold for G locally compact?
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Reiter’s properites

Theorem (Bearden–C. ’20)
Let (M,G , α) be a W ∗-dynamical system. TFAE:

1 ∃ (hi ) positive type functions in Cc(G ,Z (M)c) such that
1 hi (e) ≤ 1
2 limi hi (t) = 1 weak* uc.

2 ∃ (ξi ) in Cc(G ,Z (M)c) such that
1 〈ξi , ξi〉 ≤ 1;
2 〈ξi , (λt ⊗ αt)ξi〉 → 1 weak* uc.

3 ∃ (gi ) in Cc(G ,Z (M)c) such that
1

∫
G gi (s)ds ≤ 1

2
∫

G |(λt ⊗ αt)gi (s)− gi (s)| ds → 0 weak* uc.
4 (M,G , α) is amenable.
5 (Z (M),G , α) is amenable.

Obtained for exact groups by Buss–Echterhoff–Willet ’20.
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Herz-Schur multiplier characterization

Main technical tool: Liftings T : L∞(G)→ `∞(G).

Theorem (Bearden–C. ’20)
(M,G , α) is amenable iff ∃ a net (ξi ) in Cc(G ,Mc) such that

1 〈ξi , ξi〉 ≤ 1 for all i ;
2 Mhξi

→ idGn̄M point weak*, where

hξi (s)(a) = 〈ξi , (1⊗ a)(λs ⊗ αs)ξi〉.
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Amenability

Definition (Buss–Echterhoff–Willet ’20)
Let (A,G , α) be a C∗-dynamical system. Then (A,G , α) is:

1 von Neumann amenable if the universal W ∗-dynamical system
(A′′α,G , α) is amenable;

2 amenable if ∃ a net (hi ) of positive type functions in
Cc(G ,Z (A′′α)) such that

1 ‖hi (e)‖ ≤ 1 for all i ,
2 hi (s)→ 1 weak* uc in A′′

α.
3 strongly amenable if ∃ a net (hi ) of positive type functions in

Cc(G ,Z (M(A))) such that
1 ‖hi (e)‖ ≤ 1 for all i ,
2 hi (s)→ 1 strictly uc.

Buss–Echterhoff–Willet ’20 : (2)⇒ (1), (2)⇔ (1) exact G .

Bearden–C. ’20 : (2)⇔ (1) for any G .
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Related notion

Definition (Exel ’97, Exel–Ng ’02)
(A,G , α) has the 1-positive approximation property (AP) if ∃ net
(ξi ) Cc(G ,A) for which ‖〈ξi , ξi〉‖ ≤ 1 and

〈ξi , (1⊗ f (s))(λs ⊗ αs)ξi〉 → f (s), f ∈ Cc(G ,A)

in norm, uniformly in (s, f (s)).

Exel–Ng ’02 : A nuclear and G discrete, AP ⇒ amenability, with
equality if, in addition, A is commutative or finite-dimensional.
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Relations between notions

Buss–Echterhoff–Willet ’20 : strong amenability ⇒ AP ⇒
amenability.

Suzuki ’19: amenability 6= strong amenability, non-commutative A.

Anantharaman-Delaroche ’87 : amenability = strong amenability,
A commutative and G discrete.

Motivating questions:
1 AP = amenability in general?
2 amenability = strong amenability for A commutative G locally

compact?

Partially answer (1) and fully answer (2).
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AP through Herz-Schur Multipliers

Theorem (Bearden–C. ’20)
(A,G , α) has the AP iff ∃ a net (ξi ) in Cc(G ,A) such that

1 〈ξi , ξi〉 ≤ 1 for all i ;
2 hξi (e)→ idA point norm,
3 Mhξi

→ idGnA point norm, where

hξi (s)(a) = 〈ξi , (1⊗ a)(λs ⊗ αs)ξi〉.
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Amenability

Theorem (Bearden–C. ’20)
Let (A,G , α) be a C∗-dynamical system. TFAE:

1 (A,G , α) is amenable;

2 (Herz-Schur) ∃ a net (ξi ) in Cc(G , `2(A)) such that
1 〈ξi , ξi〉 ≤ 1 for all i ;
2 hξi (e)→ idA point norm,
3 Mhξi

→ idGnA point norm,
where hξi (s)(a) = 〈ξi , (1⊗ 1⊗ a)(λs ⊗ 1⊗ αs)ξi〉.

3 (wAP) ∃ a net (ξi ) in Cc(G , `2(A)) such that
1 〈ξi , ξi〉 ≤ 1 for all i ;
2 ‖hξi (s)(f (s))− f (s)‖ → 0 uc, f ∈ Cc(G ,A).

Moreover, when Z (A∗∗) = Z (A)∗∗, the nets (ξi ) can be chosen in
Cc(G ,Z (A)), in which case hξi (s)(a) = a〈ξi , (λs ⊗ αs)ξi〉.

Assumption Z (A∗∗) = Z (A)∗∗ circumnavigates (A,G , α)-version of
Godement’s theorem.
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Assumption Z (A∗∗) = Z (A)∗∗ circumnavigates (A,G , α)-version of
Godement’s theorem.
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Applications

Corollary (Bearden–C. ’20)
Suppose Z (A∗∗) = Z (A)∗∗. Then (A,G , α) is amenable if and only
if it has the AP.

Corollary (Bearden–C. ’20)
A commutative C∗-dynamical system (C0(X ),G , α) is amenable if
and only if it is strongly amenable, i.e., X is a topologically
amenable G-space.

Ozawa–Suzuki ’20 : amenability = AP for all (A,G , α).
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Applications

Definition (Anantharaman-Delaroche–Renault ’99)
(C0(X ),G , α) is measurewise amenable if for every quasi-invariant
Radon measure µ on X, (L∞(X , µ),G , α) is amenable.

Anantharaman-Delaroche–Renault ’99: When G is discrete, X is
topologically amenable ⇔ X is measurewise amenable.

Theorem (Buss–Echterhoff–Willet ’20)
If X and G are locally compact, second countable, then
(C0(X ),G , α) is amenable ⇔ X is measurewise amenable.

Corollary (Buss–Echterhoff–Willet ’20, Bearden–C. ’20)
If X and G are locally compact and second countable, X is
topologically amenable ⇔ X is measurewise amenable.
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Thank you!
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Liftings

A lifting is a map T : `∞(G , h)→ `∞(G , h) satisfying
1 T (f ) ≡ f (meaning equal a.e)
2 f ≡ g ⇒ T (f ) = T (g)
3 T (1) = 1
4 f ≥ 0 ⇒ T (f ) ≥ 0
5 T is linear
6 T is multiplicative

T induces a *-monomorphism T : L∞(G)→ `∞(G , h), which is a
right inverse to the canonical quotient `∞(G , h)→ L∞(G).

A. and C. Ionescu–Tuclea ’61 : Such liftings exist.
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