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Abstract. It is shown that C∗-algebras of the form C(X,U),
where U is a UHF algebra, is not an inductive limit of matrix
algebras over commutative C∗-algebras of topological dimension
less than that of X. This is in sharp contrast to dimension-
reduction phenomenon in (i) simple inductive limits of such alge-
bras, where classification implies low-dimensional approximations,
and (ii) when dimension is measured using decomposition rank, as
the author and Winter proved that dr(C(X,U)) ≤ 2.

1. Introduction

Consider C∗-algebras that take the form of a direct sum of algebras of
continuous functions from a topological space to a matrix algebra; call
this class C. Now consider the class AC of algebras that are inductive
limits of algebras in C. Such algebras, including AF, AI, AT, and
(some) AH algebras, have arisen naturally, for instance, as crossed
products of the Cantor set or the circle by minimal homeomorphisms.
However, the present purpose of considering this class of C∗-algebras
is as a test case for phenomena among less-understood finite nuclear
C∗-algebras.

A mixture of classification and other arguments has shown that there
is a dichotomy amongst the simple C∗-algebras in AC, dividing them
into algebras of low and high topological dimension. Classification
arguments, on the one hand, show that for a simple algebra in AC, if it
is an inductive limit of building blocks (in C) with bounded topological
dimension (or even “slow dimension growth”), or if it is Z-stable, then
it is an inductive limit of algebras in C with topological dimension at
most three [3, 4, 6]. By a general Z-stability theorem of Winter [12],
it follows that this is also the case for simple algebras in AC with finite
nuclear dimension (or decomposition rank). Simple algebras in AC
without these low-dimensional building blocks were found by Villadsen
[11], and further analyzed by Toms and Winter [10].

The dimension reduction alluded to above owes itself to (i) simplicity
and (ii) dimension-reducing effects of tensoring with Z (note that one
can show, without classification, that slow dimension growth implies
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Z-stability; see [8, 9, 12]). Villadsen’s high-dimensional algebras show
that simplicity alone does not produce dimension reduction. Moreover,
the named author and Winter showed that dimension-reduction, in
terms of decomposition rank (and therefore also nuclear dimension),
does occur even for nonsimple, Z-stable algebras in AC: if A ∈ AC
then dr(A⊗Z) ≤ 2 [7].

The main result here is that certain non-simple Z-stable algebras in
AC (namely, algebras of the form C(X,U) where U is a UHF algebra)
cannot be approximated by low-dimensional algebras in C.1 This re-
sult clarifies the role played by simplicity in the classification results
of [3, 4, 6]. It also provides the first example of an approximately
homogeneous algebra A with finite decomposition rank, which cannot
be approximated by homogeneous algebras with finite decomposition
rank.

In [5], Kirchberg and Rørdam devised a way to show that for any
commutative C∗-algebra C, C⊗1O2 can be approximated within C⊗O2

by commutative C∗-algebras with one-dimensional spectrum. They use
this result to show that a number of strongly purely infinite, non-simple
algebras are approximated by algebras in C with one-dimensional spec-
trum; the result also plays a crucial role in the dimension-reduction
result of [7]. Their result rests mainly on the fact that O2 has trivial
K-theory, which is closely tied to the existence of an O2-relativized
retract D2 → S1. It is not difficult to adapt their argument (as we do
in Section 5) to show that if A is such that we can solve

(1.1) C(Sn−1)
∃ //

id⊗1A ''

C(Dn, A)

f 7→f |Sn−1

��
C(Sn−1, A),

then for any n-dimensional space X, C(X)⊗ 1A can be approximated
in C(X,A) by commutative C∗-algebras with (n−1)-dimensional spec-
trum. Our main result arises by showing that the converse is true: if
C(X) ⊗ 1A can be approximated in C(X,A) by (n − 1)-dimensional
commutative algebras then there is an A-relativized retract of Dn onto
Sn−1.

The proof is broken into steps (and indeed we state the main theorem
as a number of equivalent conditions on A); in Section 3, we show
that these (n− 1)-dimensional approximants imply an approximate A-
relativized retract of Dn onto Sn−1 (i.e. that we can solve (1.1) point-
norm approximately), while in Section 4, we show that the approximate
and exact versions are equivalent.

1In work in progress, we are proving a stronger version of this result, where we
replace C by the class of subhomogeneous C∗-algebras.
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Let us introduce our notation precisely before clearly stating the
main result. For a C∗-algebra A, a C∗-subalgebra B, and a class S
of C∗-algebras, we say that B is locally approximated in A by C∗-
algebras in S if the following holds: for every finite subset F of B and
every ε > 0, there exists a C∗-subalgebra C of A such that C ∈ S
and F ⊂ε C. Note that if A is an inductive limit of algebras in S (or
an inductive limit of inductive limits of algebras in S, etc.) then it is
locally approximated by algebras in S.

If B is a commutative C∗-algebra, the value of its decomposition
rank and nuclear dimension coincide (and are equal to the covering
dimension of X if B ∼= C0(X), at least when B is separable); we use
the term topological dimension to refer to this value.

Theorem 1.1. Let A be a unital C∗-algebra and let n ∈ N. TFAE:

(i) For every n-dimensional compact Hausdorff space X, C(X) is
approximated in C(X,A) by commutative C∗-algebras of topo-
logical dimension at most n− 1;

(ii) C(Dn) is approximated in C(Dn, A) by commutative C∗-algebras
of topological dimension at most n− 1;

(iii) For every n-dimensional finite CW complex X, the inclusion
C(X)→ C(X,A) approximately factors through C∗-algebras of
the form C(Y ), where Y is a finite CW complex of dimension
at most n− 1;

(iv) For any finite set F ⊂ C(Sn−1) and ε > 0, there exists a
∗-homomorphism φ : C(Sn−1)→ C(Dn, A) such that

a ≈ε φ(a)|Sn−1

for all a ∈ F ;
(v) The inclusion map C0(Rn−1) → C0(Rn−1, A) is nullhomotopic

(within the space of ∗-homomorphisms C0(Rn−1)→ C0(Rn−1, A)).

If A ∼= A ⊗ A (using any tensor norm), then these are also equiv-
alent to the statements (i) and (iii) with the words “n-dimensional”
removed; that is, that for any Hausdorff space X, C(X) is approx-
imated in C(X,A) by commutative C∗-algebras of topological dimen-
sion at most n − 1, and if X is a finite CW complex, then the in-
clusion C(X) → C(X,A) approximately factors through commutative
C∗-algebras of topological dimension at most n− 1.

By an easy K-theoretic obstruction to (v), we obtain:

Corollary 1.2. If U is a UHF algebra then C(Dn, U) is not locally
approximated by algebras in C of topological dimension less than n.

In the remainder of this note, we prove the various implications of
Theorem 1.1, as outlined above. (iii) ⇒ (i) ⇒ (ii) are all obvious.
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2. (ii) and covering dimension

We show here that for each space X, another, somewhat technical,
covering-dimension-related condition is equivalent to the condition in
Theorem 1.1 (ii).

Let X be a compact metric space and let A be a C∗-algebra. Let U be
an open cover of X. Following T-Winter, an (n+1)-colourable partition

of unity subordinate to U means positive elements b
(i)
j ∈ C(X,A) for

i = 0, . . . , n, j = 1, . . . , r, such that:

(i) for each i, the elements b
(i)
1 , . . . , b

(i)
r are pairwise orthogonal,

(ii) for each i, j, the support of b
(i)
j is contained in some open set

in the given cover U , and

(iii)
∑

i,j b
(i)
j = 1.

Proposition 2.1. Let X be a compact metric space, let n ∈ N, and let
A be a unital C∗-algebra. TFAE:

(a) C(X) is approximated in C(X,A) by abelian C∗-algebras whose
spectrum has dimension at most n;

(b) For every open cover U of X, there exists a commuting (n + 1)-
colourable partition of unity subordinate to U .

Remark 2.2. In T-Winter Proposition 3.2, it is shown that the exis-
tence of (n+ 1)-colourable approximate partitions of unity in C(X,A)
is equivalent to dimnuc(C(X) ⊂ C(X,A)) ≤ n. (b) is an notable
strengthening, in that the partition of unity is asked to be commut-
ing. (Note that whether or not the partition of unity is approximate
is moot, since any commuting approximate partition of unity can be
turned into a commuting exact partition of unity by functional cal-
culus.) Theorem 1.1 shows that in many cases, (b) is not equivalent
to the weaker condition of non-commuting approximate partitions of
unity.

Proof. (a) ⇒ (b): Let F be a finite partition of unity such that, for
each f ∈ F , there exists Uf ∈ U such that supp f ⊂ Uf . Use (b)
to obtain a space Y of dimension at most n and a ∗-homomorphism
φ : C(Y ) → C(X,A) such that F ⊂ε φ(C(Y )) (for some sufficiently
small ε). For each f ∈ F , let gf ∈ C(Y ) be such that f ≈ φ(gf ). By
functional calculus, we may assume that suppφ(gf ) ⊂ Uf . Note that
1 ≈|F|ε

∑
f∈F φ(gf ).

Set Y ′ := {y ∈ Y :
∑

f∈F gf (y) ≥ 1 − 2|F|ε}. It follows that

kerφ = C0(Z) where Z ∩ Y ′ = ∅.

Since Y has dimension at most n, let (a
(i)
j ) be (n + 1)-colourable,

subordinate to {g−1f ((0,∞)) : f ∈ F}, such that∑
i,j

a
(i)
j |Y ′ = 1′Y .
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Set

b
(i)
j := φ(a

(i)
j ).

This is (n + 1)-colourable since (a
(i)
j ) is. It is subordinate to U , since

if the support of a
(i)
j is contained in g−1f ((0,∞)) then the support of

b
(i)
j is contained in Uf . Finally, 1 −

∑
i,j a

(i)
j ∈ C0(Y \Y ′) ⊆ C0(Z),∑

i,j b
(i)
j = 1.

(b)⇒ (a): This is clear, since the universal C∗-algebra generated by

a commuting, (n+ 1)-colourable partition of unity (b
(i)
j )i=0,...,n−1,j=1,...,r

is C(Z) where Z is a certain n-dimensional simplicial complex. �

3. (ii) ⇒ (iv)

In the following, the n-nerve of a finite open cover U , means the
following (abstract) simplicial complex on the vertex set U ,

Nn(U) := { {U1, . . . , Uk} ⊆ U | k ≤ n and U1 ∩ · · · ∩ Uk 6= ∅}.
(That is, it is the n-skeleton of the nerve of U .) We denote its geometric
realization |Nn(U)|. For U ∈ U , we let Star(U) denote the star around
U , as an open subset of |Nn(U)|. (It is the union of all the interior
parts of the realization of faces containing U .)

Lemma 3.1. Let U be an open cover of Sn−1. Then there exists an
open cover V of Dn+1 and a continuous map α : |Nn+1(V)| → Sn−1

such that the following holds: If U ∈ U and V ∈ V are such that
U ∩ V 6= ∅, then

α(Star(V )) ⊆ U.

Proof. First, letW be an (n+1)-colourable refinement of U , such that,
for any W1, . . . ,Wm ∈ W , if

W1 ∩ · · · ∩Wm 6= ∅

then W1 ∪ · · · ∪ Wm is contained in some set U ∈ U . (This can be
done by taking a barycentric refinement, see eg. [1, VIII.3], and then
an (n+ 1)-colourable refinement of that.)

Let (fW )W∈W be a partition of unity such that the support of fW is
contained in W for all W ∈ W . This induces a map α̂ : Nn+1(W)→ Sn

such that, if x ∈ Sn, U ∈ U , W ∈ W are such that x ∈ U ∩W , then

(3.1) α̂(Star(W )) ⊆ U.

Now, view Dn+1 as CSn, and let π : Sn × [0, 1] → Dn+1 be the
quotient map. For W ∈ W , set

v0(W ) := π(V × [0, 1/2)), v1(W ) := π(V × (0, 1)).

Then define

V := {vi(W ) | i = 0, 1,W ∈ W} ∪ {π(Sn × (1/2, 1])}
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Note that v0(W ) ∩ π(Sn × (1/2, 1]) = ∅, so that if {V1, . . . , Vk} ∈
Nn+1(V) then either:

(a) Each Vj is of the form vi(W ) for some i = 0, 1 and W ∈ W ; or
(b) Some Vj is equal to π(Sn × (1/2, 1]) and for every other j, Vj is of

the form v1(W ) for some W ∈ W .

Let N ′ be the subcomplex consisting of simplices of the first type; then
the map vi(W ) → W induces a map N ′ → Nn+1(W), and thereby a
map β : |N ′| → |Nn+1(W)|. We set

α||N ′| := α̂ ◦ β : |N ′| → Sn.

Then, since |Nn+1(V)| is n-dimensional, we may extend this map to all
of |Nn+1(V)|.

Now, if x ∈ Sn, U ∈ U , V ∈ V are such that x ∈ U ∩ V , then by
definition of V , V = v0(W ) for some W with x ∈ W . Consequently,
we see that Star(V ) ⊆ |N ′|, and β(Star(V )) = Star(W ) in |Nn+1(W)|.
By (3.1) and the definition of α, it follows that α(Star(W )) ⊆ U , as
required. �

The following proposition, together with Proposition 2.1, establishes
(ii) ⇒ (iv) of Theorem 1.1.

Proposition 3.2. Let A be a unital C∗-algebra and let n ∈ N. If
C(Dn) is approximated in C(Dn, A) by commutative C∗-algebras whose
spectrum has dimension at most (n−1), then (iv) of Theorem 1.1 holds.

Proof. Let F ⊂ C(Sn−1) and ε > 0 be given, as in (iv) of Theorem
1.1. Let U be an open cover of Sn−1 such that for every a ∈ F , U ∈ U
and x, y ∈ U , ‖a(x) − a(y)‖ < ε. Let V be an open cover of Dn and
α : |Nn(V)| → Sn−1 provided by Lemma 3.1. By (ii) and Proposition

2.1, let (b
(i)
j )i=0,...,n; j=1,...,r be an n-colourable commuting partition of

unity subordinate to V . For each i, j, let V
(i)
j ∈ V be a set containing

the support of b
(i)
j .

Consider the nerve N of (b
(i)
j ) (by which I mean, the nerve of the

cozero sets of the b
(i)
j ’s, as subsets of some topological space Z such

that C∗({b(i)j }) = C(Z)); we shall identify the vertices of this simplicial

complex with the elements b
(i)
j . This nerve comes with a canonical

map ψ : C(N)→ C∗({b(i)j }). If {b(i1)j1
, . . . , b

(ik)
jk
} is a simplex in N then

evidently k ≤ n+ 1 (by (n+ 1)-colourability), and

Vi1,j1 ∩ · · · ∩ Vik,jk 6= ∅.

Thus, b
(i)
j 7→ V

(i)
j induces a simplicial map from N to Nn+1(V), and

thereby a continuous map β : |N | → |Nn+1(V)|.
Define φ : C(Sn−1)→ C(Dn, A) to be the following composition

C(Sn−1)
f 7→f◦α−→ C(|Nn(V)|) f 7→f◦β−→ C(|N |) ψ−→ C∗({b(i)j }) ⊆ C(Dn, A).
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Let us now show that ‖a− φ(a)|Sn−1‖ ≤ ε for a ∈ F .
Certainly, let x ∈ Sn−1 and a ∈ F . Let U ∈ U contain x. Let the

kernel of evx◦φ be C0(S
n−1\Y ), where Y ⊆ Sn−1 is closed; thus, evx◦φ

can be viewed as a representation of C(Y ). Using the fact that a(x) ∈ C
and φ is unital, we see that ‖a(x)− φ(a)(x)‖ ≤ supy∈Y ‖a(x)− a(y)‖.
We shall show that Y ⊆ U , so that we may conclude that ‖a(x) −
φ(a)(x)‖ ≤ ε.

If the kernel of evx ◦ψ is C0(|N |\Z) then, by the definition of ψ, we

can see that Z is contained in the union of stars about vertices b
(i)
j for

which b
(i)
j (x) 6= 0, so that V

(i)
j ∩ U 6= ∅. Hence,

β(Z) ⊆
⋃
{Star(V ) | V ∈ V , V ∩ U 6= ∅}.

Consequently,

Y = α ◦ β(Z) ⊆
⋃
{α(Star(V )) | V ∈ V , V ∩ U 6= ∅},

and by Lemma 3.1, this is contained in U , as required. �

4. (iv) ⇔ (v)

The following is a fact from the theory of ANR’s.

Lemma 4.1. [?, Theorem 1.1] Let n ∈ N. There is a finite set F ⊂
C(Sn) and ε > 0 such that the following holds: If A is a commutative
C∗-algebra and φ0, φ1 : C(Sn)→ A are ∗-homomorphisms which satisfy

φ0(a) ≈ε φ1(a)

for all a ∈ F , then φ0 and φ1 are homotopic, i.e. there is a ∗-homomorphism
φ : C(Sn)→ C([0, 1], A) such that

φi = evi ◦ φ
for i = 0, 1.

The following establishes (iv) ⇔ (v).

Proposition 4.2. Let A be a unital C∗-algebra and let n ∈ N. TFAE:

(a) For any finite set F ⊂ C(Sn−1) and ε > 0, there exists a ∗-
homomorphism φ : C(Sn−1)→ C(Dn, A) such that

a ≈ε φ(a)|Sn−1

for all a ∈ F ;
(b) There exists a ∗-homomorphism φ : C(Sn−1) → C(Dn, A) such

that
a = φ(a)|Sn−1

for all a ∈ C(Sn−1);
(c) The inclusion map C(Sn−1) → C(Sn−1, A) is homotopic, within

the space of ∗-homomorphisms C(Sn−1)→ C(Sn−1, A), to a point-
evaluation.
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(d) The inclusion map C(Sn−1)→ C(Sn−1, A) is nullhomotopic, within
the space of ∗-homomorphisms C(Sn−1)→ C(Sn−1, A).

Proof. (a) ⇒ (b) Let F ⊂ C(Sn−1) and ε > 0 be given by Lemma 4.1.
Use (i) to get a ∗-homomorphism

φ0 : C(Sn−1)→ C(Dn, A)

such that φ0(a)|Sn−1 ≈ε a for all a ∈ F . Note that

B := C∗(C(Sn−1) ∪ φ0(C(Sn−1))|Sn−1)

is a commutative subalgebra of C(Sn−1, A). Therefore by Lemma 4.1,
there exists ψ : C(Sn−1)→ C([0, 1], B) such that

(4.1) ev0 ◦ ψ = φ0|Sn−1

and ev1 ◦ ψ is equal to the trivial inclusion C(Sn−1) ⊆ B.
Dn is homeomorphic to (Dn ∪ [0, 1] × Sn−1)/ ∼, where ∼ identi-

fies each point of ∂Dn ∼= Sn−1 with the corresponding point of {0} ×
Sn−1. Viewing Dn in this way, we see that (4.1) ensures that φ ⊕
ψ : C(Sn−1) → C(Dn, A) ⊕ C([0, 1] × Sn−1, A) induces a map φ :
C(Sn−1) → C(Dn, A) such that φ(a)|Sn−1 = ψ(a)|{1}×Sn−1 = a, as
required.

(b) ⇒ (a) is obvious.
(b)⇔ (c)⇔ (d) can be seen using well-known topological arguments.

�

5. (iv) ⇒ (iii)

Proof of (iv) ⇒ (iii). This is essentially contained in the proof of [5,
Proposition 3.5].

Assume that (iv) holds.
Given a finite subset F of C(X) and ε > 0, let us take a CW decom-

position of X so that each a ∈ F varies by at most ε on each cell of the
complex. We may view this decomposition as a canonical surjection

α :
r∐

k=1

Dk → X,

where each Dk is homeomorphic to a disc of dimension at most n, and
the restriction of α to

⋃
D◦k is one-to-one. Composition with α provides

an injective ∗-homomorphism C(X) → C(
∐r

k=1Dk); we will identify
C(X) with its image under this map. For each k, define Yk ⊆ Dk

and φk : C(Yk) → C(Dk, A) as follows: If Dk has dimension n, set
Yk := ∂Dk and let φk be as given by (ii) of Proposition 4.2. Otherwise,
set Yk := Dk and let φk : C(Dk)→ C(Dk, A) be the inclusion.

Note that in both cases, we have ∂Dk ⊆ ∂Yk and φk(a)|∂Dk
= a|∂Dk

for all a ∈ C(Dk). Set φ̂ =
⊕

φk : C(
∐r

k=1 Yk)→ C(
⋃r
k=1Dk), and set
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Y = α(
∐
Yk). Since φ̂(a)|⋃ ∂Dk

= a|⋃ ∂Dk
, we see that for a ∈ C(Y ) ⊆

C(
∐
Yk),

φ̂(a) ∈ C(X,A) ⊆ C(
∐

Dk, A).

Hence, φ := φ̂|C(Y ) is a map from C(Y ) to C(X,A). For x ∈ X, the
kernel of evx ◦ φ is C0(Y \K) where

K ⊆
⋃
{α(Dk) | x ∈ α(Dk)}.

Since each a ∈ F varies by at most ε on each α(Dk), we see that

φ(a|Y )(x) ≈ε a(x).

�

Proof of the last sentence of Theorem 1.1. The above argument, and
induction, shows that if Theorem 1.1 (iv) holds, then for any m ≥ n,
the inclusion C(Dm) → C(Dm, A⊗m) can be approximately factorized
as

C(Dm)
ψ−→ C(Γ)

φ−→ C(Dm, A⊗(m−n+1)),

where Γ has dimension at most n − 1 and ψφ(f)|Sm−1 = f |Sm−1 . We
may identify Am−n+1 with A, so that for any m ∈ N, the inclusion
C(Dm)→ C(Dm, A⊗m) can be approximately factorized as

C(Dm)
ψ−→ C(Γ)

φ−→ C(Dm, A⊗(m−n+1)),

where Γ has dimension at most n − 1 and ψφ(f)|Sm−1 = f |Sm−1 (this
factorization is trivial if m ≤ n − 1). Then, a patching-together ar-
gument as in the above proof shows that the (iii) holds with the “n-
dimensional” removed, and again, this obviously implies that (i) holds
with the words “n-dimensional” removed. �
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